Maximum entropy and the moment problem
HTML articles powered by AMS MathViewer
 by H. J. Landau PDF
 Bull. Amer. Math. Soc. 16 (1987), 4777
References

1. N. I. Akhiezer, The classical moment problem, Hafner, New York, 1965.
2. L. Breiman, Probability and stochastic processes, HoughtonMifflin, Boston, 1969.
 A. M. Bruckstein and T. Kailath, Inverse scattering for discrete transmissionline models, SIAM Rev. 29 (1987), no. 3, 359–389. MR 902563, DOI 10.1137/1029075
 Alfred M. Bruckstein, Bernard C. Levy, and Thomas Kailath, Differential methods in inverse scattering, SIAM J. Appl. Math. 45 (1985), no. 2, 312–335. MR 781110, DOI 10.1137/0145017
 A. Bultheel, Error analysis of incoming and outgoing schemes for the trigonometric moment problem, Padé approximation and its applications, Amsterdam 1980 (Amsterdam, 1980), Lecture Notes in Math., vol. 888, Springer, BerlinNew York, 1981, pp. 100–109. MR 649088 6. J. P. Burg, Maximum entropy spectral analysis, Proc. 37th Meet. Soc. Exploration Geophysicists, 1967; reprinted in Modern Spectrum Analysis (D. G. Childers, ed.), IEEE Press, New York, 1978, pp. 3439. 7. J. P. Burg, A new analysis technique for time series data, NATO Adv. Study Inst, on Signal Processing, Enschede, Netherlands, 1968; reprinted in Modern Spectrum Analysis (D. G. Childers, ed.), IEEE Press, New York, 1978, 4248. 8. J. P. Burg, The relationship between maximum entropy spectra and maximum likelihood spectra, Geophysics, 1972; reprinted in Modern Spectrum Analysis (D. G. Childers, ed.), IEEE Press, New, York, 1978, pp. 132133. 9. J. P. Burg, Maximum entropy spectral analysis, Ph.D. dissertation, Stanford University, Stanford, California, 1975. 10. D. G. Childers, ed., Modern spectrum analysis, IEEE Press, New York, 1978. 11. B. S. Choi and T. M. Cover, An informationtheoretic proof of Burg’s maximum entropy spectrum, Proc. IEEE 72 (1984), 10941095.
 I. Csiszár and G. Tusnády, Information geometry and alternating minimization procedures, Statist. Decisions suppl. 1 (1984), 205–237. Recent results in estimation theory and related topics. MR 785210
 A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 1, 1–38. With discussion. MR 501537, DOI 10.1111/j.25176161.1977.tb01600.x
 Harry Dym and Andrei Iacob, Applications of factorization and Toeplitz operators to inverse problems, Toeplitz centennial (Tel Aviv, 1981) Operator Theory: Advances and Applications, vol. 4, Birkhäuser, BaselBoston, Mass., 1982, pp. 233–260. MR 669911
 I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, Vol. 41, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware. MR 0355675
 B. Gopinath and M. M. Sondhi, Inversion of the telegraph equation and the synthesis of nonuniform lines, Proc. IEEE 59 (1971), 383–392. MR 0339916, DOI 10.1109/PROC.1971.8179
 Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, BerkeleyLos Angeles, 1958. MR 0094840
 Simon Haykin (ed.), Nonlinear methods of spectral analysis, Topics in Applied Physics, vol. 34, SpringerVerlag, BerlinNew York, 1979. MR 601216
 Kenneth Hoffman, Banach spaces of analytic functions, PrenticeHall Series in Modern Analysis, PrenticeHall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008 20. E. T. Jaynes, On the rationale of maximum entropy methods, Proc. IEEE 70 (1982), 939952.
 Thomas Kailath, A theorem of I. Schur and its impact on modern signal processing, I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel, 1986, pp. 9–30. MR 902601, DOI 10.1007/9783034854832_{2}
 T. Kailath, A. Bruckstein, and D. Morgan, Fast matrix factorizations via discrete transmission lines, Linear Algebra Appl. 75 (1986), 1–25. MR 825396, DOI 10.1016/00243795(86)901783
 T. Kailath and H. LevAri, On mappings between covariance matrices and physical systems, Linear algebra and its role in systems theory (Brunswick, Maine, 1984) Contemp. Math., vol. 47, Amer. Math. Soc., Providence, RI, 1985, pp. 241–252. MR 828304, DOI 10.1090/conm/047/828304
 T. Kailath, A. Vieira, and M. Morf, Inverses of Toeplitz operators, innovations, and orthogonal polynomials, SIAM Rev. 20 (1978), no. 1, 106–119. MR 512865, DOI 10.1137/1020006 25. S. J. Karlin and W. J. Studden, Tchebycheff systems: With applications in analysis and statistics, Interscience, New York, 1966.
 M. G. Kreĭn, The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of integrals and their further development, Uspehi Matem. Nauk (N.S.) 6 (1951), no. 4 (44), 3–120 (Russian). MR 0044591
 M. G. Kreĭn, Solution of the inverse SturmLiouville problem, Doklady Akad. Nauk SSSR (N.S.) 76 (1951), 21–24 (Russian). MR 0039895
 M. G. Kreĭn, On integral equations generating differential equations of 2nd order, Doklady Akad. Nauk SSSR (N.S.) 97 (1954), 21–24 (Russian). MR 0065016
 M. G. Kreĭn, Continuous analogues of propositions on polynomials orthogonal on the unit circle, Dokl. Akad. Nauk SSSR (N.S.) 105 (1955), 637–640 (Russian). MR 0080735 30. R. T. Lacoss, Autoregressive and maximum likelihood spectral analysis methods, Aspects of Signal Processing, Part 2, NATO Adv. Study Inst., La Spezia, Italy, 1976 (G. Tacconi, ed.), D. Reidel, Boston, pp. 591615.
 H. J. Landau, The inverse problem for the vocal tract and the moment problem, SIAM J. Math. Anal. 14 (1983), no. 5, 1019–1035. MR 711183, DOI 10.1137/0514082
 Hanoch LevAri and T. Kailath, Lattice filter parametrization and modeling of nonstationary processes, IEEE Trans. Inform. Theory 30 (1984), no. 1, 2–16. MR 730996, DOI 10.1109/TIT.1984.1056849 33. T. L. Marzetta and S. W. Lang, Power spectral density bounds, IEEE Trans. Inf. Theory IT30 (1984), 117122.
 Athanasios Papoulis, Maximum entropy and spectral estimation: a review, IEEE Trans. Acoust. Speech Signal Process. 29 (1981), no. 6, 1176–1186. MR 642904, DOI 10.1109/TASSP.1981.1163713 35. E. A. Robinson, Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms, Proc. IEEE 70 (1982), 10391054.
 Rodney W. Johnson and John E. Shore, Comments on and correction to: “Axiomatic derivation of the principle of maximum entropy and the principle of minimum crossentropy” [IEEE Trans. Inform. Theory 26 (1980), no. 1, 26–37; MR0560389 (80m:94029)], IEEE Trans. Inform. Theory 29 (1983), no. 6, 942–943. MR 733203, DOI 10.1109/TIT.1983.1056747
 John E. Shore and Rodney W. Johnson, Properties of crossentropy minimization, IEEE Trans. Inform. Theory 27 (1981), no. 4, 472–482. MR 635526, DOI 10.1109/TIT.1981.1056373
 Jan M. Van Campenhout and Thomas M. Cover, Maximum entropy and conditional probability, IEEE Trans. Inform. Theory 27 (1981), no. 4, 483–489. MR 635527, DOI 10.1109/TIT.1981.1056374
 Y. Vardi, L. A. Shepp, and L. Kaufman, A statistical model for positron emission tomography, J. Amer. Statist. Assoc. 80 (1985), no. 389, 8–37. With discussion. MR 786595, DOI 10.1080/01621459.1985.10477119
Additional Information
 Journal: Bull. Amer. Math. Soc. 16 (1987), 4777
 MSC (1985): Primary 42A70; Secondary 42A05, 62M15, 94A17, 60G25
 DOI: https://doi.org/10.1090/S027309791987154644
 MathSciNet review: 866018