Monopoles on asymptotically Euclidean 3-manifolds
HTML articles powered by AMS MathViewer
- by Andreas Floer PDF
- Bull. Amer. Math. Soc. 16 (1987), 125-127
References
-
1. C. Casson, Lectures given at the MSRI, Berkeley, Spring, 1985.
- A. Chakrabarti, Harrison-Neugebauer-type transformations for instantons: multicharged monopoles as limits, Phys. Rev. D (3) 25 (1982), no. 12, 3282–3298. MR 668637, DOI 10.1103/PhysRevD.25.3282
- S. K. Donaldson, Nahm’s equations and the classification of monopoles, Comm. Math. Phys. 96 (1984), no. 3, 387–407. MR 769355, DOI 10.1007/BF01214583
- A. Floer, The configuration space of Yang-Mills-Higgs theory of asymptotically flat manifolds, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 43–75. MR 1362822
- A. Floer, Monopoles on asymptotically flat manifolds, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 3–41. MR 1362821
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- N. J. Hitchin, Monopoles and geodesics, Comm. Math. Phys. 83 (1982), no. 4, 579–602. MR 649818, DOI 10.1007/BF01208717
- Arthur Jaffe and Clifford Taubes, Vortices and monopoles, Progress in Physics, vol. 2, Birkhäuser, Boston, Mass., 1980. Structure of static gauge theories. MR 614447
- Thomas Parker and Clifford Henry Taubes, On Witten’s proof of the positive energy theorem, Comm. Math. Phys. 84 (1982), no. 2, 223–238. MR 661134, DOI 10.1007/BF01208569
- Richard Schoen and Shing Tung Yau, Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 209–228. MR 645740
Additional Information
- Journal: Bull. Amer. Math. Soc. 16 (1987), 125-127
- MSC (1985): Primary 53C05; Secondary 57M99
- DOI: https://doi.org/10.1090/S0273-0979-1987-15485-1
- MathSciNet review: 866030