Stable harmonic 2-spheres in symmetric spaces
HTML articles powered by AMS MathViewer
- by F. Burstall, J. Rawnsley and S. Salamon PDF
- Bull. Amer. Math. Soc. 16 (1987), 274-278
References
-
1. F. Burstall and J. Rawnsley, Twistors, harmonic maps and homogeneous geometry (to appear).
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Norio Ejiri, The index of minimal immersions of $S^{2}$ into $S^{2n}$, Math. Z. 184 (1983), no. 1, 127–132. MR 711733, DOI 10.1007/BF01162011
- William B. Gordon, Convex functions and harmonic maps, Proc. Amer. Math. Soc. 33 (1972), 433–437. MR 291987, DOI 10.1090/S0002-9939-1972-0291987-1
- A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR 87176, DOI 10.2307/2372388
- Ralph Howard and S. Walter Wei, Nonexistence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space, Trans. Amer. Math. Soc. 294 (1986), no. 1, 319–331. MR 819950, DOI 10.1090/S0002-9947-1986-0819950-4
- J.-L. Koszul and B. Malgrange, Sur certaines structures fibrées complexes, Arch. Math. (Basel) 9 (1958), 102–109 (French). MR 131882, DOI 10.1007/BF02287068
- Pui Fai Leung, On the stability of harmonic maps, Harmonic maps (New Orleans, La., 1980) Lecture Notes in Math., vol. 949, Springer, Berlin-New York, 1982, pp. 122–129. MR 673586
- André Lichnerowicz, Applications harmoniques et variétés kähleriennes, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69) Academic Press, London, 1968/1969, pp. 341–402 (French). MR 0262993 10. M. J. Micallef, On the topology of positively curved manifolds (preprint).
- John Douglas Moore, Compact Riemannian manifolds with positive curvature operators, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 279–282. MR 828826, DOI 10.1090/S0273-0979-1986-15440-6
- Yoshihiro Ohnita, Stability of harmonic maps and standard minimal immersions, Tohoku Math. J. (2) 38 (1986), no. 2, 259–267. MR 843811, DOI 10.2748/tmj/1178228492 13. A. Pluzhnikov, On the minimum of the Dirichlet functional (to appear) (Russian)
- J. Sacks and K. Uhlenbeck, The existence of minimal immersions of $2$-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1–24. MR 604040, DOI 10.2307/1971131
- Yum Tong Siu, Some remarks on the complex-analyticity of harmonic maps, Southeast Asian Bull. Math. 3 (1979), no. 2, 240–253. MR 564815
- Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. MR 577360, DOI 10.1007/BF01390043
- R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc. 47 (1975), 229–236. MR 375386, DOI 10.1090/S0002-9939-1975-0375386-2
- A. V. Tyrin, Critical points of the multidimensional Dirichlet functional, Mat. Sb. (N.S.) 124(166) (1984), no. 1, 146–158 (Russian). MR 743062
- Joseph A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033–1047. MR 0185554
- W. J. Zakrzewski, Classical solutions of two-dimensional Grassmannian models, J. Geom. Phys. 1 (1984), no. 2, 39–63. MR 794979, DOI 10.1016/0393-0440(84)90003-2
Additional Information
- Journal: Bull. Amer. Math. Soc. 16 (1987), 274-278
- MSC (1985): Primary 58E20; Secondary 53C35, 53C42
- DOI: https://doi.org/10.1090/S0273-0979-1987-15516-9
- MathSciNet review: 876963