Morse theory for fixed points of symplectic diffeomorphisms
HTML articles powered by AMS MathViewer
- by Andreas Floer PDF
- Bull. Amer. Math. Soc. 16 (1987), 279-281
References
- V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
- C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49. MR 707347, DOI 10.1007/BF01393824
- Andreas Floer, Proof of the Arnol′d conjecture for surfaces and generalizations to certain Kähler manifolds, Duke Math. J. 53 (1986), no. 1, 1–32. MR 835793, DOI 10.1215/S0012-7094-86-05301-9
- Barry Fortune, A symplectic fixed point theorem for $\textbf {C}\textrm {P}^n$, Invent. Math. 81 (1985), no. 1, 29–46. MR 796189, DOI 10.1007/BF01388770
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942, DOI 10.1515/9781400878055
- Jean-Claude Sikorav, Points fixes d’une application symplectique homologue à l’identité, J. Differential Geom. 22 (1985), no. 1, 49–79 (French). MR 826424 8. A. Weinstein, C0 -perturbation theorems for symplectic fixed points and Lagrangian intersections, Lecture Notes, Amer. Math. Soc. Summer Institute on nonlinear functional analysis and applications, Berkeley, 1983.
Additional Information
- Journal: Bull. Amer. Math. Soc. 16 (1987), 279-281
- MSC (1985): Primary 53C15; Secondary 58F05
- DOI: https://doi.org/10.1090/S0273-0979-1987-15517-0
- MathSciNet review: 876964