ALGEBRAIC VECTOR BUNDLES
OVER REAL ALGEBRAIC VARIETIES

M. BUCHNER AND W. KUCHARZ

By an affine algebraic variety, we mean in this note a locally ringed space
\((X, \mathcal{R}_X)\) which is isomorphic to a ringed space of the form \((V, \mathcal{R}_V)\), where \(V\) is
a Zariski closed subset in \(\mathbb{R}^n\) and \(\mathcal{R}_V\) is the sheaf of rings of regular functions
on \(V\). Recall that \(\mathcal{R}_V(V)\) is the localization of the ring of polynomial functions
on \(V\) with respect to the multiplicatively closed subset consisting of functions
vanishing nowhere on \(V\) \([2, 15]\).

Let \(F\) be one of the fields \(\mathbb{R}, \mathbb{C}\) or \(\mathbb{H}\) (quaternions). A continuous \(F\)-vector
bundle \(\xi\) over \(X\) is said to admit an algebraic structure if there exists a finitely
generated projective module \(P\) over the ring \(\mathcal{R}_X(X) \otimes_{\mathbb{R}} F\) such that the \(F\-
vector bundle over \(X\), associated with \(P\) in the standard way, is \(C^0\) isomorphic
to \(\xi\).

Our purpose is to study the following

PROBLEM. Characterize continuous \(F\)-vector bundles over \(X\) which admit
an algebraic structure.

This is an old problem, but despite considerable effort, the situation is well
understood only in a few special cases: when \(X\) is the unit sphere \(S^n\) \([4, 16]\),
when \(X\) is the real projective space \(\mathbb{R}P^n\) \([5, 7]\) and when \(\dim X \leq 3\) and
\(F = \mathbb{R}\) \([8, 9]\) (cf. also \([13]\) for a short survey).

Clearly, \(\mathbb{R}P^n\) with its natural structure of an abstract real algebraic variety
is actually an affine variety and every affine real algebraic variety admits a
locally closed embedding in some \(\mathbb{R}P^n\).

Let us first consider \(\mathbb{C}\)-vector bundles.

Let \(X\) be an affine nonsingular real algebraic variety and assume for a mo­
ment that \(X\) is embedded in \(\mathbb{R}P^n\) as a locally closed subvariety. Consider
\(\mathbb{R}P^n\) as a subset of the complex projective space \(\mathbb{C}P^n\). Let \(U\) be a Zariski
neighborhood of \(X\) in the set of nonsingular points of the Zariski (complex)
closure of \(X\) in \(\mathbb{C}P^n\). Denote by \(H_{\text{alg}}^{\text{even}}(U, \mathbb{Z})\) the subgroup of the coho­
metry group \(H^{\text{even}}(U, \mathbb{Z})\) generated by the cohomology classes which are
Poincaré dual to the homology classes in the Borel-Moore homology group
\(H^{\text{even}}(U, \mathbb{Z})\) represented by the closed irreducible complex algebraic subvari­
eties of \(U\) (cf. \([3]\)). Let \(H_{\text{C}}^{\text{even}}(X, \mathbb{Z})\) be the image of \(H_{\text{alg}}^{\text{even}}(U, \mathbb{Z})\) via the
restriction homomorphism \(H^{\text{even}}(U, \mathbb{Z}) \rightarrow H^{\text{even}}(X, \mathbb{Z})\). One easily checks
that \(H_{\text{C}}^{\text{even}}(X, \mathbb{Z})\) does not depend on the choice of \(U\) or the choice of the
embedding of \(X\) in \(\mathbb{R}P^n\).

Received by the editors November 14, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 14F05, 55B15.
Both authors were supported by NSF grant DMS-8602672.

©1987 American Mathematical Society
0273-0979/87 $1.00 + $0.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
THEOREM 1. Let X be an affine nonsingular real algebraic variety and let ξ be a continuous \mathbb{C}-vector bundle over X. If ξ admits an algebraic structure, then the total Chern class $c(\xi)$ of ξ belongs to $H^{\text{even}}_{\text{C-}\text{alg}}(X, \mathbb{Z})$. Conversely, ξ admits an algebraic structure, provided that $c(\xi)$ belongs to $H^{\text{even}}_{\text{C-}\text{alg}}(X, \mathbb{Z})$, X is compact, $\dim X \leq 5$ and ξ is of constant rank.

SKETCH OF PROOF. We can assume that X is a locally closed subvariety in $\mathbb{R}P^n$. Suppose that ξ admits an algebraic structure. Then one can find a Zariski neighborhood U of X in the Zariski closure of X in $\mathbb{C}P^n$ and an algebraic vector bundle ξ over U such that the restriction $\xi|_X$ of ξ to X is C^0 isomorphic to ξ. It easily follows from [3] that $c(\xi)$ belongs to $H^{\text{even}}_{\text{C-}\text{alg}}(X, \mathbb{Z})$.

If all assumptions of the second part of Theorem 1 are satisfied, then with the help of the Grothendieck formula (cf. [6, p. 151]), one constructs a continuous \mathbb{C}-vector bundle η over X such that rank $\eta = 2$, η admits an algebraic structure and $c(\eta) = c(\xi)$ (here both assumptions, $c(\xi) \in H^{\text{even}}_{\text{C-}\text{alg}}(X, \mathbb{Z})$ and $\dim X \leq 5$ are essential). Since ξ is of constant rank, ξ and η are stably equivalent [12]. The conclusion follows now from [16, Theorem 2.2].

Our next step is the calculation of the groups $H^{2k}_{\text{C-}\text{alg}}(X, \mathbb{Z})$ for a large class of varieties.

THEOREM 2. Let X be a locally closed nonsingular algebraic subvariety of $\mathbb{R}P^n$ and let X_C be the Zariski closure of X in $\mathbb{C}P^n$. Assume that X_C is nonsingular. Then $H^{2i}_{\text{C-}\text{alg}}(X, \mathbb{Z})$ is equal to the image of the restriction homomorphism

$$H^{2i}(\mathbb{R}P^n, \mathbb{Z}) \to H^{2i}(X, \mathbb{Z})$$

in each of the following two cases:

(a) $2i \leq 2\dim X - n$.
(b) X_C is an ideal theoretic complete intersection in $\mathbb{C}P^n$ and $2i < \dim X$.

SKETCH OF PROOF. Consider the commutative diagram

$$
\begin{array}{ccc}
H^{2i}(\mathbb{C}P^n, \mathbb{Z}) & \xrightarrow{\gamma} & H^{2i}(X_C, \mathbb{Z}) \\
\delta \downarrow & & \beta \downarrow \\
H^{2i}(\mathbb{R}P^n, \mathbb{Z}) & \xrightarrow{\alpha} & H^{2i}(X, \mathbb{Z})
\end{array}
$$

where all homomorphisms are the restriction homomorphisms. If γ is an isomorphism, then $H^{2i}(X_C, \mathbb{Z}) = H^{2i}_{\text{alg}}(X_C, \mathbb{Z})$ and β maps $H^{2i}(X_C, \mathbb{Z})$ onto $H^{2i}_{\text{C-}\text{alg}}(X, \mathbb{Z})$. Moreover, since δ is an epimorphism, $H^{2i}_{\text{C-}\text{alg}}(X, \mathbb{Z})$ is equal to the image of α.

If (a) is satisfied, then γ is an isomorphism by the Lefschetz theorem [1].

If (b) is satisfied, then γ is an isomorphism by the Larsen theorem [10].

Notice that if (b) is satisfied and $\dim X$ is odd, then $H^{\text{even}}_{\text{C-}\text{alg}}(X, \mathbb{Z})$ is completely determined. For even $\dim X$, the situation is more complicated. Indeed, let

$$V^n = \{ [x_0, \ldots, x_n, x_{n+1}] \in \mathbb{R}P^{n+1} | x_0^2 + \cdots + x_n^2 = x_{n+1}^2 \}.$$

Then the Zariski closure of V^n in $\mathbb{C}P^{n+1}$ is nonsingular and the restriction homomorphism $H^{\text{even}}(\mathbb{R}P^{n+1}, \mathbb{Z}) \to H^{\text{even}}(V^n, \mathbb{Z})$ is the zero homomorphism.
On the other hand, V^n is algebraically isomorphic to S^n and hence every continuous C-vector bundle over V^n admits an algebraic structure [4, 16]. It follows from Theorem 1 that $H_{C-\text{alg}}^n(V^n, \mathbb{Z})$ is nontrivial, provided that n is even.

The example above indicates that the case in which $\dim X$ is even can only be handled under some additional assumptions.

Denote by $P(n; k)$ the projective space associated with the vector space of all homogeneous polynomials in $\mathbb{R}[x_0, \ldots, x_n]$ of degree k. If an element H in $P(n; k)$ is represented by a polynomial G, then $V(H)$ will denote the subvariety of $\mathbb{R}P^n$ defined by G.

Theorem 3. Let Y be a locally closed algebraic subvariety of $\mathbb{R}P^n$, $\dim Y \geq 2$. Assume that the Zariski closure of Y in $\mathbb{C}P^n$ is a nonsingular ideal theoretic complete intersection. Then there exists a nonnegative integer k_0 such that, for every integer k greater than k_0, one can find a subset Σ_k of $P(n; k)$ which is a countable union of proper subvarieties of $P(n; k)$ and has the property that for every H in $P(n; k) \backslash \Sigma_k$, $V(H)$ is either empty or nonsingular and transverse to Y and the group $H_{C-\text{alg}}^{even}(Y \cap V(H), \mathbb{Z})$ is equal to the image of the restriction homomorphism

$$H_{C-\text{alg}}^{even}(\mathbb{R}P^n, \mathbb{Z}) \to H_{C-\text{alg}}^{even}(Y \cap V(H), \mathbb{Z}).$$

In particular, if $Y = \mathbb{R}P^n$, then Theorem 3 determines $H_{C-\text{alg}}^{even}$ for generic algebraic hypersurfaces in $\mathbb{R}P^n$, $n \geq 2$, of sufficiently high degree.

The proof of Theorem 3 is technically more complicated. Besides the Lefschetz theorem Moishezon's result [11, Theorem 5.4] also plays an essential role.

Theorems 2 and 3 show that, in many cases, Theorem 1 imposes severe restrictions on continuous C-vector bundles admitting an algebraic structure.

Among several applications of Theorem 3, we want to select only the simplest one.

Theorem 4. Let n be a positive integer. Then there exists a C^∞ embedding $h: S^n \to \mathbb{R}^{n+1}$, arbitrarily close in the C^∞ topology to the inclusion map, and a closed nonsingular algebraic subvariety X in \mathbb{R}^{n+1} such that $h(S^n) = X$ and every continuous C-vector bundle over X admitting an algebraic structure is stably trivial. If $n = 4 \pmod 8$, then also every continuous \mathbb{R}- or \mathbb{H}-vector bundle over X admitting an algebraic structure is stably trivial.

Theorem 4 is interesting in view of the fact that every continuous \mathbb{F}-vector bundle over S^n admits an algebraic structure [4, 16]. Let us also mention that every continuous stably trivial \mathbb{F}-vector bundle admits an algebraic structure [16, Theorem 2.2].

The second part of Theorem 4 immediately implies that Shiota’s conjecture [14, p. 1007] is false over X. Shiota has conjectured that a continuous \mathbb{R}-vector bundle ξ of constant rank over an affine nonsingular compact real algebraic variety Y admits an algebraic structure if and only if all Stiefel-Whitney classes of ξ are Poincaré dual to the $\mathbb{Z}/2\mathbb{Z}$-homology classes of Y represented by closed algebraic subvarieties of Y. He proved the “only if” part of the
conjecture and the “if” part is established in [8, 9] for vector bundles over surfaces and threefolds.

Sketch of the Proof of Theorem 4. Let G be an element in $P(n+1; 2k+2)$ represented by the homogeneous polynomial

$$(x_0^2 + \cdots + x_n^2 - x_{n+1}^2)(x_0^2 + \cdots + x_n^2 + x_{n+1}^2)^k.$$

If we identify \mathbb{R}^{n+1} with a subset of $\mathbb{R}P^{n+1}$ via the map which sends (x_0, \ldots, x_n) to $[x_0, \ldots, x_n, 1]$, then $S^n = V(G)$. By Theorem 3 (applied to $Y = \mathbb{R}P^{n+1}$ and k sufficiently large) together with Theorem 1, there exists an element H in $P(n+1; 2k+2)$ such that H is arbitrarily close to G and for every continuous C-vector bundle ξ over $X = V(H)$, the total Chern class of ξ is equal to 0. Clearly, there exists a C^∞ embedding $h: S^n \to \mathbb{R}^{n+1}$ which is close to the inclusion map and satisfies $h(S^n) = X$. Since X is diffeomorphic to S^n, the vector bundle ξ is stably trivial.

The second part of Theorem 4 follows by considering the complexification and the realization of vector bundles and by using the fact that the reduced Grothendieck group of continuous F-vector bundles over X is isomorphic to Z.

References