GENERALIZED ALBANESE VARIETIES
FOR SURFACES

HURSIT ÖNSIPER

In this paper we announce a solution to the generalized Albanese problem for smooth projective surfaces. More precisely, for such a surface X over a field k and for each modulus m (see next paragraph) we show the existence of a pair (G, α), where G is a commutative algebraic group over k (or more generally a principal homogeneous space under such a group), $\alpha: X \to G$ is a rational map, and any rational map with modulus m factors through α.

Let X be such a surface and let $U = X \sim \bigcup D_j$ be the complement of a finite number of integral divisors on X. In [2, Chapter 3, Proposition 1] it was shown that for a rational map $\alpha: X \to G$ into an algebraic group we get a homomorphism $\gamma_m: C_m(X) \to G(k)$ for some modulus m, where $C_m(X)$ denotes the K-theoretic idele class group of X. When $\text{domain}(\alpha) = U$ we have $m = \sum m_j D_j$ with $m_j \geq 1$. In this situation we say that α admits m as modulus.

It is clear that by usual descent arguments we may assume that k is algebraically closed and work with algebraic groups rather than principal homogeneous spaces.

Let Cat_m denote the category of maps $\alpha: X \to G$ which admit m as modulus.

THEOREM 1. In Cat_m there exists $\alpha: X \to G_{um}$ with the universal mapping property described above.

SKETCH OF THE PROOF. By [5, Corollary to Theorem 2] it suffices to show that the dimension of algebraic groups G with $\beta: X \to G$ in Cat_m and β maximal [5, Definition 2] is bounded. For this by blowing up points in U we reduce to the case of a Lefschetz pencil $\pi: X' \to \mathbb{P}^1$ with m flat over \mathbb{P}^1.

Then by using [2, Chapter 3, Lemma 1] we see that $(\beta, \pi): X'' \to G \times S$ admits m as a modulus in the sense of [6, Definition 1] ($X'' \to S \subset \mathbb{P}^1$ is the smooth part of the pencil). Hence it factors through the relative generalized jacobian J_m of X'' [6, Theorem 1]. Then it is easy to see that the dimension of the group generated by β is equal to the dimension of the image of the composite map

$$J_m \to G \times S \xrightarrow{\text{proj}} G.$$

Therefore if β generates G then $\dim(G) \leq \dim(J_m)$.

REMARK. We can give an alternate proof of Theorem 1 by applying [7, §3, Proposition 4] to show that α admits m as modulus iff

$$\alpha^*(\Omega_G^{\text{inv}}) \subset (H^0(U, \Omega_U)^d=0 \cap H^0(X, \Omega_X(-m))).$$

Received by the editors January 21, 1987 and, in revised form, June 8, 1987.

This ties Theorem 1 with the modulus defined by Faltings and Wüstholz [1, Theorem 1] in characteristic zero.

For the construction of the pair (G_{um}, α) we have

THEOREM 2. In characteristic zero, the universal pair can be constructed by rigidifying the Picard functor $\text{Pic}_{\text{Pic}_X^0}$ of the Picard variety Pic_X^0 of X.

SKETCH OF THE CONSTRUCTION. We know that G_{um} must be an extension of the Albanese variety Alb_X of X by a connected algebraic group. Therefore it comes from a rigidification of $\text{Pic}_{\text{Pic}_X^0}$ [3] (for rigidification see [4, Definition 2.1.1]). The rigidifier R is supported on $\{x_1, \ldots, x_r, 0\}$ in Pic_X^0, where x_1, \ldots, x_r is a set of free generators for the image of

$$\text{Kernel}(ZD_1 + \cdots + ZD_n \rightarrow \text{Pic}_X(k) \rightarrow \text{Pic}_X(k)/\text{Pic}_X^0(k))$$

and 0 is the zero section. For a given m we can determine R explicitly (for a special case see [3]). Then α is obtained simply by using the definition of the rigidified Picard functor.

REMARKS. (1) For $m' \geq m$ we have an affine morphism $G_{um'} \rightarrow G_{um}$, hence $\lim G_{um}$ exists. This pro-smooth group is important for the class-field theory of X.

(2) The homomorphism $\gamma_m: C_m(X) \rightarrow G_{um}(k)$ is surjective because for x in U, 1 in $C_m(x)$ is mapped to $\alpha(x)$ and α generates G_{um}. In characteristic zero it seems natural to expect that when we restrict to the idele classes of degree zero, γ_m is an isomorphism iff $p_g(X) = 0$.

The details together with the discussion of the relative case and the extension to dimensions > 2 will appear elsewhere.

REFERENCES

DEPARTMENT OF ELECTRICAL ENGINEERING, MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA, TURKEY

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use