CORRIGENDUM TO: SMOOTH NONTRIVIAL
4-DIMENSIONAL s-COBORDISMS

SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

In [1] we constructed a family of nontrivial topological s-cobordisms of 3-
dimensional quaternionic spaces. This and further considerations led to the
result that there are either 2^{2^r-r-1} or 2^{2^r-r} distinct s-cobordisms of any
quaternionic space-form $M_r = S^3/Q_r$ to itself, where Q_r denotes the quaternion
group of order 2^{r+2}. In [2] we erroneously claimed, using in part various
exact sequences in algebraic L-theory, that the upper bound was precise,
and used this to detect the topological nontriviality of some explicitly con-
structed smooth s-cobordisms. Reconsideration of this material using some
exact sequences of Ranicki [4] and particularly the related unpublished work
on algebraic “visible” L-theory of Michael Weiss [5] leads to the opposite
conclusion:

Theorem. There are precisely 2^{2^r-r-1} topologically distinct s-cobordisms
of the quaternionic space M_r^3 to itself.

In particular, the questions of whether the construction of [2] is smoothly
a product, as well as the smoothability of the above examples, remain open.
The above theorem will be proved in [3].

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, COURANT INSTITUTE, NEW YORK UNIVERSITY,
NEW YORK, NEW YORK 10012

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK,
NEW JERSEY 08903

Received by the editors July 28, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 57R80.
Both authors partially supported by NSF grants.