Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Tightly closed ideals
HTML articles powered by AMS MathViewer

by Melvin Hochster and Craig Huneke PDF
Bull. Amer. Math. Soc. 18 (1988), 45-48
References
  • Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68 (French). MR 877006, DOI 10.1007/BF01405091
  • Henri Skoda and Joël Briançon, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de $\textbf {C}^{n}$, C. R. Acad. Sci. Paris Sér. A 278 (1974), 949–951 (French). MR 340642
  • Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292 (German). MR 302938, DOI 10.1007/BF01403182
  • Melvin Hochster, Topics in the homological theory of modules over commutative rings, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 24, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Nebraska, Lincoln, Neb., June 24–28, 1974. MR 0371879, DOI 10.1090/cbms/024
  • Melvin Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553. MR 723406, DOI 10.1016/0021-8693(83)90092-3
  • [HH] M. Hochster and C. Huneke, Tight closures, invariant theory, and the Briançon-Skoda Theorem, in preparation.
  • Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
  • Melvin Hochster and Joel L. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), no. 2, 117–172. MR 417172, DOI 10.1016/0001-8708(76)90073-6
  • George Kempf, The Hochster-Roberts theorem of invariant theory, Michigan Math. J. 26 (1979), no. 1, 19–32. MR 514958
  • Joseph Lipman and Avinash Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981), no. 2, 199–222. MR 616270
  • Joseph Lipman and Bernard Teissier, Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), no. 1, 97–116. MR 600418
  • [PS] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, I.H.E.S. Publ. Math. 42 (1973), 323-395.
  • Keiichi Watanabe, Study of $F$-purity in dimension two, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, pp. 791–800. MR 977783
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 13C99
  • Retrieve articles in all journals with MSC (1980): 13C99
Additional Information
  • Journal: Bull. Amer. Math. Soc. 18 (1988), 45-48
  • MSC (1980): Primary 13C99
  • DOI: https://doi.org/10.1090/S0273-0979-1988-15592-9
  • MathSciNet review: 919658