Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 1567658
Full text of review: PDF This review is available free of charge.
Book Information:
Author: Hans Riesel
Title: Prime numbers and computer methods for factorization
Additional book information: Progress in Mathematics, vol. 57, Birkhäuser, Boston, Basel and Stuttgart, 1985, xvi + 464 pp., $44.95. ISBN 0-8176-3291-3.
- Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1983), no. 1, 173–206. MR 683806, DOI https://doi.org/10.2307/2006975
- H. Cohen and A. K. Lenstra, Implementation of a new primality test, Math. Comp. 48 (1987), no. 177, 103–121, S1–S4. MR 866102, DOI https://doi.org/10.1090/S0025-5718-1987-0866102-2 S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, Proc. 18th Annual ACM Symp. on Theory of Computing (1986), 316-329. J. C. Lagarias and A. M. Odlyzko, Computing π(x): an analytic method, J. Algorithms 8 (1987), 173-191. J. C. Lagarias, V. S. Miller and A. M. Odlyzko, Computing π(x): the Meissel-Lehmer method, Math. Comp. 44 (1985), 537-560.
- D. H. Lehmer, Strong Carmichael numbers, J. Austral. Math. Soc. Ser. A 21 (1976), no. 4, 508–510. MR 417032, DOI https://doi.org/10.1017/s1446788700019364 A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory, Handbook of Theoretical Computer Science (to appear). H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (to appear).
- J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974), 521–528. MR 354514, DOI https://doi.org/10.1017/s0305004100049252
- C. Pomerance, Analysis and comparison of some integer factoring algorithms, Computational methods in number theory, Part I, Math. Centre Tracts, vol. 154, Math. Centrum, Amsterdam, 1982, pp. 89–139. MR 700260
- Carl Pomerance, The quadratic sieve factoring algorithm, Advances in cryptology (Paris, 1984) Lecture Notes in Comput. Sci., vol. 209, Springer, Berlin, 1985, pp. 169–182. MR 825590, DOI https://doi.org/10.1007/3-540-39757-4_17
- Carl Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, Discrete algorithms and complexity (Kyoto, 1986) Perspect. Comput., vol. 15, Academic Press, Boston, MA, 1987, pp. 119–143. MR 910929
- Michael O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), no. 1, 128–138. MR 566880, DOI https://doi.org/10.1016/0022-314X%2880%2990084-0
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- René Schoof, Elliptic curves over finite fields and the computation of square roots mod $p$, Math. Comp. 44 (1985), no. 170, 483–494. MR 777280, DOI https://doi.org/10.1090/S0025-5718-1985-0777280-6
- R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977), no. 1, 84–85. MR 429721, DOI https://doi.org/10.1137/0206006
- Volker Strassen, Einige Resultate über Berechnungskomplexität, Jber. Deutsch. Math.-Verein. 78 (1976/77), no. 1, 1–8. MR 438807
Review Information:
Reviewer: Carl Pomerance
Journal: Bull. Amer. Math. Soc. 18 (1988), 61-65
DOI: https://doi.org/10.1090/S0273-0979-1988-15599-1