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CRABGRASS, MEASLES, AND GYPSY MOTHS: 
AN INTRODUCTION TO MODERN PROBABILITY 

RICHARD DURRETT 

This paper is based on a talk given at the Annual Meeting of the American 
Mathematical Society in San Antonio, Texas, January 21-24, 1978. The sub
ject is interacting particle systems and the aim of the paper, like that of the 
talk, is to explain some of the results in this area to someone with no knowl
edge of probability theory except for an understanding of what it means to 
flip a coin with probability p of heads. More than this is needed for some of 
the proofs given below, so a short appendix (three paragraphs) is provided 
which explains some of the concepts which may be unfamiliar. 

In what follows we will discuss five models. The last three are hinted at 
in the title. The first two (Richardson's model and percolation) are related 
systems which are of interest in their own right, and will set the stage for 
explaining the other processes. Along the way the reader will encounter first-
passage percolation, the subadditive ergodic theorem, branching processes, 
and large deviations, and will see how interacting particle systems can be 
used to study nonlinear PDE's. 

1. Richardson's model. In this model the state at time n is fn C Zd. 
When considering this process as a model of the spread of a biological popula
tion, we think of the points of f n as being "occupied". At other times when we 
think of Richardson's model as describing the spread of an infection through 
an orchard of trees, we will call the points in £n "infected". Both interpreta
tions are common in the literature and we will use both below as convenience 
dictates. Using the first interpretation, the evolution of the process may be 
described as follows: 

If x € fn then x € fn+i-
If X £ £ n then P(x <£ f n + l | £ n ) = (1 - p ) # ° f o c c u P i e d neighbors 

The first rule says there are no deaths. To explain the second rule we begin 
with the left-hand side. It says: "The probability that x is not in fn+i given 
that £n is the state at time n." On the right-hand side, the neighbors of x are 
the 2d points with | | jc-y| | i = 1 (where ||a;-2/||i = \x\ — 2/x | H \-\xd-yd\)-
In words, the rule says each occupied neighbor independently sends a particle 
to x with probability p, so the probability they all fail to put a particle at 
x is given by the right-hand side. The reader should note that the state at 
time n is a subset of Zd , i.e. each site is occupied by 1 or 0 particles, so if two 
neighbors simultaneously make the site occupied only one particle results. 
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Let f£ be the state at time n when initially only 0 is occupied. In Richard
son's model ££ grows and eventually contains all of Zd , so attention focuses 
on how fJJ grows. The main result says the set of occupied sites has a limiting 
shape: 

(1) THEOREM. There is a convex set D so that for any e > 0 we have 

n(l - e)D nZd C&C n(l + e)D 

for all n sufficiently large. 

Loosely speaking f £ looks like nD n Zd when n is large. To get a feel for 
this result and how it is proved we begin with the trivial case d = 1. In this 
situation if we let tk = inf{n: fc € fn) be the first time k is infected, then it 
is easy to see that 

P(tx > m) = (1 - p)m for m = 0 , 1 , . . . , 

i.e., t\ has a geometric distribution. A little more thought shows that t<i—t\, 
*3—*2J • • • are independent random variables which have the same distribution 
as $i, so the strong law of large numbers can be applied to conclude that with 
probability one 

tk/k converges to Et\ as k —• oo, 

where E denotes expected value and 
oo 

E«i = ^2 m P (* i =m) = 1/p. 
m = l 

Since {A; G f£} = {tk < n}, a little arithmetic shows that Theorem 1 holds 
with D = [—p,p]. 

The simple argument above breaks down in d > 1 because there is more 
than one way for the infection to spread from 0 to x, and a new approach is 
needed. We begin by reformulating the model to show that it is a special case 
of "first-passage percolation". Consider Zd as a graph with edges connecting 
each pair of points x, y with \\x—y\\\ = 1 and assign each edge an independent 
random variable r(x, y) = r(y, x) with a geometric distribution. (When the 
geometric distribution is replaced by a general distribution the resulting model 
is called first-passage percolation.) If the infection reaches x first then r(x,y) 
is the amount of time that elapses before the particle at x tries to infect the 
one at y. From the interpretation of r(x, y) it should be clear that if XQ = 0, 
a?i,..., xn = y is a path from 0 to y (i.e., ||a;i_i — Xi\\i = 1 for i = 1 , . . . , n) 
then the "travel time" for this path, T(XQ,X\) + • • • + r(xn_i,a;n), gives an 
upper bound for the time it takes the infection to spread from 0 to y. A little 
more thought reveals that the first infection time 

t(y) = mî{n:ye£} 

is the infimum of the travel times over all paths from 0 to y. 
In studying t(y), it is useful to consider £(x, y) = the minimum travel time 

for paths from x to y because this family of variables has the subadditivity 
property: 

(2) *fov)+ %,*)> *(*,*) 
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(paths from x to y and from y to z can be combined to give a path from x to z 
but there are other ways to get from x to z). (2) is called subadditivity. When 
= holds in (2), as it did in d = 1, t(0, k) is a sum of k independent random 
variables and the strong law of large numbers implies that with probability 
one 

*(0, k)/k - • E*(0,1) as k -+ oo. 

Somewhat remarkably, almost the same conclusion holds under (2): 
(3) Let tk = £(0, kx) where x G Zd. With probability one 

tk/k —• inf Etj/j as k —• oo. 
j 

The first step in the proof is a nice exercise for an undergraduate analysis 
class: if a* = Etk then (1) implies Oj + ak-j > a* and it follows from this 
that 

dk/k —• 'mîaj/j as k —• oo. 
3 

The rest of the proof is too involved to give here. A nice proof can be found in 
Liggett (1985a). To motivate the reader to look up this paper we would like to 
point out that the result proved there is a generalization of Kingman's (1973) 
subadditive ergodic theorem, which is in turn a very useful generalization of 
BirkhofTs ergodic theorem. 

(3) gives a limiting result for the passage time to (kz,0) when z G Zd. 
If we extend the definition of the first-passage time to x G R2 by setting 
t(x) = inf{n: [x] G fj|}, where [x] is the closest point in Z2 to x (with some 
convention for breaking ties) then an easy argument shows 

(4) There is a constant c(x) so that with probability one 

t(kx)/k —• c(x). 

The last result gives radial limits for the first-passage times. With a 
little work this conclusion can be improved to show that (1) holds with 
D = {x: c(x) < 1}. The key step is to show that there is a S > 0 so 
that P(f£ D {x: \\x\\i < n<5}) —* 1. Once this is established a simple covering 
argument does the rest. 

The expression for the limiting constant in (3) is mathematically nice be
cause the infimum exists and is nonnegative and finite. It does not, how
ever, lend itself well to computation (except of course for upper bounds), and 
very little is known about the limit set D in d > 1. One can, of course, 
make the trivial observations that D has the same symmetry as Zd , contains 
{x: \\x\\i < p}, and is contained in {x: \\x\\i < 1}, the limit when p = 1. The 
only nontrivial information about D is that in d = 2 it has a "flat edge" when 
p is close to 1, i.e. DC\{x: x\ +X2 = 1} is an interval. See Durrett and Liggett 
(1981) for a proof. 

NOTES. For more about first-passage percolation see Smythe and Wierman 
(1978), Cox and Durrett (1981), and Kesten (1986) or (1987b). An interesting 
higher-dimensional generalization which is an active topic of current research 
is treated in Kesten (1987a). 
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2. Percolation. Percolation is one of the simplest systems which exhibits 
a "phase transition". In this model we again consider Zd as a graph with edges 
connecting each pair of points x, y with ||x - y\\i = 1, but this time the edges 
(which we will call bonds) are designated as open or closed with probabilities 
p and 1 — p respectively, and the choices are made independently for each 
bond. We think of the open bonds as being air spaces which are large enough 
to permit the passage of a fluid. With this in mind we define the cluster 
containing 0: Co = {x: 0 —• a;}, where 0 -+ x is short for "there is a path of 
open bonds from 0 to x" (and "path" is as defined in the previous section). 
Co is the set of sites which will become wet if there is a source of fluid at 0. If 
Co is infinite then we say percolation occurs. The probability of percolation is 
a nondecreasing function of p, so it is natural to define the critical probability 

pc = inf{p:P(|C0 | = oo )>0} . 

In d = 1 the percolation problem is trivial. pc = 1 because if p < 1 
then moving in either direction from 0 one will eventually encounter a closed 
bond and not be able to go further. In what follows then we will confine our 
attention to d > 2. The first thing to be proved is that pc is nontrivial, i.e., 
0 < Pc < 1. To prove the lower bound we begin by observing that if there 
is a path from 0 to x then there is a self-avoiding path, i.e., one which visits 
any point at most once. The number of self-avoiding paths of length n is 
< 2d(2d — l ) w - 1 (the first step may be in any direction but after that we are 
forbidden to go back where we came from.) The probability that such a path 
is open is pn so the probability of having an open self-avoiding path of length 
> N is at most 

oo 

^ 2 d ( 2 d - l ) n - V 
n=N 

lfp< l/(2d - 1) then the last sum - • 0 as N -+ oo, so P(|C0 | = oo) = 0 and 
P c > l / ( M - 1 ) . 

To prove pc < 1 it suffices to consider the case d = 2 since the critical value 
is a decreasing function of the dimension. Let 

W = U x+[-l/2,l/2]2. 
xECo 

W stands for wet region. In words, we have replaced each point in Co by a 
square of side 1 centered at the point so the result is a solid blob. If Co is finite, 
let T be the boundary of the unbounded component of the open set R2 — W. 
T is called the contour associated with C0. If we let Y2 = (1/2,1/2) + Z2 

and consider Y2 as a graph with edges connecting points x,y € Y2 with 
Ik — î/||i = 1 then drawing a picture (see Figure 1) one sees that T is a union 
of edges on the graph Y2 and each edge in T crosses a closed bond on Z2. 

If the contour has length n (i.e., it consists of n edges) then the probabil
ity all the edges it crosses are closed is (1 — p)n . The contour is automati
cally self-avoiding and since it surrounds 0, it contains some edge of the form 
((k + 1/2, -1 /2) , (k + 1/2,1/2)) where 0 < k < n/2. Combining the last two 
observations we see that the number of contours of length n is less than n 3 n _ 1 
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and that the probability of a contour of length greater than N is at most 

n=N 

The shortest possible contour has length 4 so if p is close to 1 the sum 
is less than 1 and there is positive probability that no contour exists (i.e., 
percolation occurs). To get a better bound on pc we observe that if p > 2/3 
then the last quantity goes to 0 as N —• oo. To see that this is enough to 
show there is positive probability of percolation pick N = 4(2M +1) to make 
the sum < 1 and observe that if by a miracle all the bonds in [—M, M]2 are 
open then the shortest possible contour around Co has length N and given 
that the miracle occurs the probability that such a contour will exist is < 1. 

The last two results show that in d = 2 we have 1/3 < pc < 2/3, and if 
one is good at leaping to conclusions one can guess that the answer is the 
midpoint of this interval: pc = 1/2. The first step in proving this was taken 
by Harris in 1960 when he showed pc > 1/2. Four years later two physicists, 
Sykes and Essam, showed that if one assumed that the function 

f(p) = Jtn-1Pp(\C0\ = n) 
n = l 

(the subscript on P indicating that bonds are open with probability p) which 
gives "the number of clusters per unit volume" has a singularity at p = pc 

but is otherwise smooth, then pc = 1/2, and for percolation on triangular 
and hexagonal lattices in d = 2 one has pc = 2 sin(7r/18) [the unique root of 
3p - p3 = 1 in (0,1)] and pc = 1 - 2 sin(7r/18) respectively. 

This state of affairs existed for over 15 years until Kesten showed in 1980 
that pc = 1/2 and shortly thereafter Wierman generalized Kesten's proof to 
show that the numbers given above for the triangular and hexagonal lattice 
were also correct. The proof of Kesten's result is a somewhat lengthy story 
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but it contains techniques which are important for what follows so we will 
give the main steps. A second motivation for describing the argument is 
that the proof given below is simpler in several respects than the original 
and although these simplifications are "widely known" they have not been 
explained in print. Even with the simplifications the proof is still messy so if 
the reader gets bored or confused he can safely skip ahead after finishing the 
proof of pc > 1/2. 

The keys to our proof are the idea of a sponge crossing and a "duality" for 
planar percolation problems hinted at in the proof of pc < 2/3. A sponge is a 
rectangle [0, m) x [0, n], and we say a left-to-right crossing occurs if there is a 
path of open bonds from {0} x [0, n] to {m} x [0, n). A little graph theory (due 
to Whitney in the 1930s) shows that either there is a left-to-right crossing of 
[0, m] x [0, n] on Z2 or there is a path on the dual graph Y2 (described above) 
from the top to bottom of [1/2, m — 1/2] x [-1/2, n +1/2] which only crosses 
bonds on Z2 which are closed, but not both. The last sentence becomes easier 
to say if we declare the bonds on Y2 to be open (resp. closed) if the bonds 
on Z2 which they cross are open (resp. closed). We will use this convention 
in what follows. 

When m = n + l the original sponge and the dual sponge are both n + 1 
units long and n units wide, so if p = 1/2 it follows from symmetry that the 
probability of a right-to-left crossing is 1/2. The last observation is one of 
the keys to the proof that pc > 1/2. The second is the following useful result 
which is usually referred to as Harris's inequality. 

(1) Let A and B be increasing events—i.e., if A occurs for some configu
ration of open and closed bonds then it occurs in every outcome with more 
open bonds. Then 

P{Af\B)>P{A)P{B) 

The existence of an open path from one point (or set of points) to another 
is the basic example of an increasing event. If A and B are both events of this 
type then the lemma says that if we are lucky enough to find one connection 
then it increases the probability of finding the other one. 

(1) is easy to prove (see Kesten (1982), pp. 72-73) but, as the reader will 
see below, it is very useful. The third and final ingredient in our proof is 
the following weird and wonderful result from Russo (1981). Let pm,n be the 
probability of a left-to-right crossing of an m x n sponge. 

(2) PZL/2,L>(l-(l-PL,L)1/2f. 

As you can probably guess from looking at the right side, the proof is a 
little tricky. The square root comes from the fact that if Ai and A2 are two 
increasing events with A — A\ U A2 and P{A{) = P{A<i) then 

(1 - P(Ai))2 = 1 - P(AX) - P(A2) + P(Ai)P(A2) since P(AX) = P(A2) 
<l-P(A1)-P(A2)^-P(A1nA2) by(l) 
= 1 - P(A) since A = Ax U A2 

or, rearranging, 

p^o^i-a-p^))1 /2 . 
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The nice thing about the last inequality is that if P{A) is close to 1 then 
so is the lower bound on P(Ai), and that is much better than just saying 
P(Ai) > P(A)/2. 

In proving (2), we apply the last result to get crossings which begin or 
end in the top (or bottom) half of the square, and if one does this cleverly 
left-to-right crossings of [0, L] x [0, L] and [L/2,3L, 2] x [0, L] and a top-to-
bottom crossing of the second square can be combined to get a crossing of 
[0,3L/2] x [0, L). The proof is very slippery (there are two incorrect proofs in 
the literature) and we have nothing to add to Russo's treatment, so we will 
not confuse the reader by giving the details. 

0 ( fc - l )L/2 (Jb + l)L/2 kL 

FIGURE 2 

With (2) in hand the rest of the proof of pc < 1/2 is smooth sailing. 
Drawing a picture (see Figure 2) shows 

(3) for k > 1 pkL,L > (p(fc+i)L/2,z,)3; 

for if all three paths exist, the desired crossing occurs, and the three events 
are increasing so the probability of the intersection is bigger than the product 
of their probabilities. Using this result with k = 2 and k = 3 gives 

P2L,L > (P3L/2,Z,)3, P3L,L > ( P 2 L , L ) 3 -

Combining the last two results with (2) shows that when p = 1/2 we have 

(4) P3L,L > (1 - 2- 1 / 2 ) 2 7 = 3.99 x HT1 5 , 

a lower bound which is not very big but has the virtue of being independent 
ofL. 

When p = 1/2 this bound applies equally well to crossing dual rectangles 
with closed paths. If we can cross [n, 3n] x [—3n, 3n] and [—3n, — n] x [—3n, 3n] 
from top to bottom, and cross [-3n, 3n] x [n, 3n] and [—3n, 3n] x [—3n, — n] 
from left to right with closed paths on the dual then we create a closed circuit 
of dual bonds which forces CQ to be finite. The probability all four paths exist 
is by (4) and Harris's inequality at least 

(1 - 2"1 /2)1 0 8 = 2.53 x 10"58 > 0. 

This probability is ridiculously small, but taking n = 3fc gives an infinite 
sequence of disjoint square annuli in which the event can happen, so with 
probability 1 it will eventually happen and Co will be finite. 
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Having shown that pc > 1/2, the next step is to show that if p > 1/2 
then percolation occurs with positive probability. This is a two-step process: 
(i) first show there is an eo > 0 so that if PL,L > 1 — £o then percolation 
has positive probability and then (ii) show that if p > 1/2 then PL,L —• 1 as 
L —• oo. Given the developments above, the first step is easy. We start by 
observing that (3) could have been written as 

(5) 1 - pkL,L < 3(1 - P(k+1)L/2,L) 

by observing that the probability some path in Figure 2 fails to exist is smaller 
than the right-hand side; a similar argument (see Figure 3) shows 

(6) 1 - P 4 L , L < 5 ( 1 - P 2 L , L ) . 

0 L 2L 3L 4L 

FIGURE 3 

The second jab of our 1-2 punch is due to Aizenman, Chayes, Chayes, 
Frohlich, and Russo (1983): 

(7) p4L,2L > 1 - (1 - P4L,L) 2 -

(7) is proved by placing two 4L by L rectangles next to each other and ob
serving that we will cross the resulting 4L by 2L rectangle unless both 4L by 
L rectangles fail to be crossed and that those events are independent. 

Combining the last two results gives 

(8) P 4 L , 2 L > 1 - 2 5 ( 1 - / > 2 L , L ) 2 . 

At first (8) may not look like much, but if we start with a small value, squaring 
is much more powerful than multiplying by 25. To be less mystical, if PIL,L = 
1 - A/25 with A < 1 then (8) implies 

P4L,2L > 1 - A2/25, 

PSL,4L > 1 - A4/25, 

and by induction 

(9) p(2*L, 2*"1L) > 1 - (1/25) exp(2fc-1 log A). 

The last inequality shows that if PIL,L is close enough to 1 then the sponge 
crossing probabilities converge to 1 exponentially fast. 



CRABGRASS, MEASLES, AND GYPSY MOTHS 125 

To get this scheme started we observe that if PL,L > 1 — £ then (2) implies 

P 3 L A L > ( l - e 1 / 2 ) 3 

and (5) gives us 
P2L,L > 1 - 3(1 - P3L/2,L), 

so if e < eo then P2L,L > -99 and (9) holds with À = 1/4. To get from (9) to a 
positive probability of percolation pick L so that p ,̂L > 1 — £o> define boxes 

B2fc_1 = [0,22fc-1X]x[0 )2
2*-2L], 

B2k = [0,22k-1L}x[0,22kL}, 

and observe that if we get left-to-right crossings of all the Bik-\ and top-
to-bottom crossings of all the B^k then there is an infinite path starting on 
{0} x [0, L] (see Figure 4). The probability that we get all the paths we want 
and that in addition all the bonds on {0} x [0,L] are open is by Harris's 
inequality at least 

oo 

PL u t 1 - (V25)exp(-2fc-xlog4)] > 0, 
k=i 

so we have demonstrated (i). 
Last but not least we come to (ii). The key to the proof of this is Russo's 

formula: 
(10) if A is an increasing event then 

d 
—PP(A) = E(# of pivotal bonds) 

where a bond is said to be pivotal if changing its state changes the occurrence 
of the event; i.e., when the bond is open A occurs but if the bond is closed it 
does not. 

To prove (ii) we apply this fact to At, — there is a left-to-right crossing of 
[0, L +1] x [0, L] with L large, and show that if p > 1/2 and PP(AL) <1- e0 

(the magic constant in the proof of (i)) then the derivative is large. Since 
P I / 2 ( A L ) = 1/2, this fact implies that 

M{p:Pp(AL)> l - e 0 } ^ l / 2 , 

and in view of the proof of (i) it follows that PL,L —• 1 for all p > 1/2. 
To complete the proof now we need to get our hands dirty and find a large 

number of pivotal bonds. The fact that this step is nontrivial can be proved by 
noting that Russo (1978) knew that large sponge-crossing probabilities implied 
percolation (and was aware of Russo's formula!), but he could not complete 
the proof, nor could anyone else, until Kesten came along and finished the 
problem. 

Kesten's idea was to look at the lowest left-to-right crossing. The event 
that a is the lowest crossing is determined by the bonds which lie on or below 
<r, so if we condition on a being the lowest crossing the distribution of the 
bonds which lie above it is not affected by the conditioning. In this virgin 
territory which lies above a we look for a closed path on the dual which comes 
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2L 8L 

FIGURE 4 

down and touches a. If PV(AL) < 1 - £o then the probability of finding one is 
at least 6Q (the probability of a top-to-bottom dual crossing by closed bonds 
is 1 — P(AL) and all we want to do is go down to a). If there is a path on the 
dual from the top down to a call it u (if there are more than one, pick the 
left-most one). 

The bond at the point where u touches a is pivotal since a is the lowest 
crossing and the presence of u implies that every crossing must pass through 
this bond. In the region to the right of u and above a (which is still virgin 
territory) we look for more closed crossings by introducing roughly log3L 
disjoint square annuli centered at the point where u touches a and looking for 
closed circuits in these annuli which go from u to a. Every circuit produces 
at least one pivotal bond and when P ( ^ L ) < 1 - £o there is a lower bound on 
the probability of these circuits, so the expected number is at least 8 log L for 
some S > 0. 
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Further details are left to the reader. Readers who want to see why Kesten 
is famous for his ability to compute things should look at Kesten (1981), 
where the construction above is sharpened to produce L6 pivotal bonds. This 
improvement is needed if one wants to get nontrivial bounds on "critical ex
ponents" . Critical exponents are of central importance in the study of phase 
transitions but a little too complicated to discuss here. 

NOTES. The classic reference for percolation is Kesten (1982) but this 
treatment is hard to read since it treats all planar percolation problems si
multaneously. Wierman's (1982) survey and Kesten's (1987b) paper are more 
readable; the latter reference will fill you in on the current state of knowl
edge. For a treatment of a random surface problem which is the dual of 
three-dimensional percolation see Aizenman, Chayes, Chayes, Frohlich, and 
Russo (1983). 

3. Measles. The next process can be used to model the spread of a 
disease or a forest fire. The state of the process at time n is a function 
fn : Z2 —• {1,2,0}. The states 1, i, and 0 have the following meanings in the 
two interpretations: 

fire measles 
1 tree healthy 
* on fire infected 
0 burnt immune 

We have chosen measles for the disease because in that case once you have 
had the disease you cannot have it again. With this or a forest fire in mind, 
the dynamics of the model can be described as follows: 

If£n(z)=0then£n+i(a;) = 0. 
If fn(x) = i then fn+i(z) = 0. 
If fn(x) = l then 

P(£n+l(x) = l|£n) = (1 - p)# o f i n f e c t e d *eighbor8? 

P(6M-I(X) = «ie») = i - p(e»+i(s) = ikn). 
The reason for the first rule was explained above. In the second we have 

taken the unreasonable viewpoint that the disease always lasts for exactly one 
unit of time. This can be generalized considerably but we only consider the 
simplest case here. The third rule should be familiar from the Richardson's 
model: each infected neighbor independently tries to infect x with probability 
P-

We will be interested in what happens when the initial state is given by: 
£o(0) = i and Ço(x) = 1 for x ^ 0. Let In = {x: Çn(x) = i} be the set of 
infected individuals at time n and let QQO = {In ^ 0 for all n} be the event 
that the infection does not die out. The probability of Hç» is a nondecreasing 
function of p, so we define 

pc = in f{p :P p (n o o )>0} . 

The first thing we will prove about this model is that pc = 1/2. Given the 
fact that Pc was 1/2 in the last section the reader has probably already leapt 
to the conclusion that this process has something to do with percolation. To 
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spell out the connection we need to introduce a special construction of the 
process under consideration. At each point x and for each of its neighbors y 
we flip a coin with probability p of heads to see if x will try to infect y at the 
one time x is infected (if this ever occurs), and we draw an arrow from x to 
y if it will try. Let Co = {x : 0 —• x} where 0 —» x means there is a path of 
arrows from 0 to x. A little thought reveals that Co is the set of sites which 
will ever be infected and QQO = {Co is infinite}. 

The percolation process described in the last paragraph is not the bond 
percolation model described in the last section since in that process we flip 
a coin for each pair of neighbors x and y to see if they are connected by a 
bond which can be traversed in either direction and here we use two different 
coins for the two oriented edges (x,y) and (y,x). Somewhat surprisingly it is 
equivalent in a very strong sense: if S and T are two subsets of Z2 then the 
probability of a path from S to T is the same in the two models. The last fact 
is surprising, but once you realize that it is true for any graph, it can easily 
be verified by induction on the number of bonds in the graph (with a passage 
to the limit to handle Z2). 

The key to the proof is the observation that when we add a new edge (a, b) 
to the undirected graph and two edges (a, b) and (6, a) to the corresponding 
directed graph then one of three things can happen: (i) there was already a 
connection from S to T; (ii) there is no path from S to T but there is a path 
from S to a and from b to T so if the oriented edge (a, b) is open there is a path 
from S to T; (iii) the situation in (ii) occurs and in addition there is a path 
from S to b and from a to T so if (a, b) is open in either direction there is a 
path from S to T. At first it looks like case (iii) torpedoes the proof since the 
oriented model has two chances to make the connection while the unoriented 
model has one. A closer look, however, reveals case (iii) is a special case of 
(i): there is a path from S to b and from b to T so there is already a path 
from S to T. With (iii) out of the way we are left with case (ii) in which each 
model has exactly one chance to make the desired connection and each will 
succeed with probability p. 

With the equivalence just described in hand, the fact that pc = 1/2 fol
lows from results in the last section. Let S = {0}, Tn = {x: ||x||i = n} 
and let n —• oo. The reader should note that this argument shows that the 
percolation probability is the same in the two models and the result above 
implies that sponge crossing probabilities have exactly the same values. The 
last observation makes the techniques used to study percolation available to 
treat the model under consideration. Returning to a theme of §1, we can use 
these techniques to prove a "shape theorem". 

(1) THEOREM. Let Jn = {x: fn(x) = 0} be the set of sites which are 
immune at time n. There is a convex set D so that for all e > 0 

n(l - e)D H Co C Jn C n(l + e)D 

for all n sufficiently large. 
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The key to the proof of this result is, as in §1, a subadditivity property of 
the first-infection times 

t(x) = inf{n: fn(aO = i}-

To introduce the subadditivity property we will again reformulate things in 
terms of first-passage percolation. Assign the oriented bond (x, y) the value 
1 if an arrow was drawn from a; to y in the construction above, and assign 
(x, y) the value oo if not. If we let r(x, y) be the value assigned to (x, y) then 
again r(x,y) is the amount of time that will elapse between the time x first 
becomes infected and the time it tries to infect y. From the interpretation of 
r(x, y) and arguments in §1 it should be clear that the first-infection time t(x) 
is the infimum of the travel times over all paths from 0, and if we let £(x, y) 
be the minimum passage time from x to y then 

(2) t(x,y) + t(y,z)>t(x,z). 

The infection times t(x,y) are infinite with positive probability, so we can
not directly apply the subadditive ergodic theorem. To get around this dif
ficulty let p > 1/2 and observe that results in the last section imply that 
the probability of a left-to-right crossing of [0,3L] x [0, L] goes to 1 exponen
tially fast as L —• oo. If we can cross [—3n, 3n] x [n, 3n] from left to right, 
[n, 3n] x [~3n, 3n] from top to bottom, [—3n, 3n] x [—3n, —n] from right to 
left, and [—3n, —n] x [—3n, 3n] from bottom to top then we have a clockwise 
circuit of arrows surrounding 0. Let A(0) be the smallest such circuit which is 
connected to oo: i.e., if a: € A(0) there are an infinite number of points y with 
x —• y, where x —• y means there is a path of arrows from x to y. Using the 
construction we used in the last section to produce percolation when p > 1/2, 
it is easy to show that A(0) exists and furthermore 

(3) P(radius of A(0) > n) < Ce"*" 

where C,7 € (0,oo). 
Our substitute for the passage times £(x, y) are the times s(x, y) = the min

imum passage time from A(x) to A(y). The times s{x,y) are not subadditive 
but if we let u(x) be the number of arrows on or inside A(x) then 

(4) s(x, y) + u(y) + s(y, z) > s(x, z). 

Adding u{z) to both sides and letting r(x, y) = s(x, y) + u(y) then we get 

(5) r(z,y) + r(y,*) >r(x,z) 

The r(x, y) are always finite since if xo, x i , . . . , xn is a path from x to y one can 
build a path from A(x) to A(y) from A(x0)U A(xi)U- • -U A(xn). The bound 
(3) on the size of the A(x») implies Er(x, y) < oo (in fact E(r(x, y))k < oo for 
all fc), so the subadditive ergodic theorem can be applied to conclude that if 
rk = r(0, kx) with x E Z2 then with probability one 

(6) Vk/k-^MErj/j. 
3 

To get from this result to a limit theorem for the t(x, y) we observe that if 
*(0, fcx) < oo 

r(0, kx) - u(kx) = s(0, kx) < *(0, kx) < u(0) + r(0, kx), 
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u(0)/k —• 0 as k —• 00. To estimate the other error we observe that for any 
£ > 0 

oo oo 
oo > Et*(0)/e > J2 p (w (°)A > *0 = Y, p(u(kx) £ te), 

SO 

P(u(kx)/k > e for some k > K) —>0 as K —• oo. 

If we let c(x) be the right-hand side of (6) then we have shown 

(7) P(l*(0, kx) - kc{x)\ < ke, *(0, kx) < oo) -+ 0. 

for all e > 0. As in §1, if we extend the definition of passage times to x € R2 

by setting 
*(a;) = inf{n: £„([&]) = i}, 

where [x] is the closest point in Z2 to a;, then an easy argument shows that 
(7) remains valid and a little more work gives the conclusion stated in the 
theorem. 

NOTES. The techniques used above are mostly from Cox and Durrett 
(1981). The proof of (1) will appear in Cox and Durrett (198?). That paper 
treats a more general model in which a site stays infected for an amount of 
time with distribution F and while infected emits germs according to a Poisson 
process with rate a, the germ landing at one of the four neighbors chosen at 
random. In the general model the bonds out of a point are not independent 
(they are positively correlated) so one does not have the equivalence used 
above and one must generalize the results of the last section. 

4. Gypsy moths. In this process (officially called the contact process) 
and the next one, time is continuous, i.e. the process is defined for all t > 0. 
Otherwise, these processes are much like a version of Richardson's model in 
which occupied sites become vacant with positive probability. The state at 
time t is & C Zd. As before, we could think of £t as the set of "occupied" 
sites, but to be true to our title, we think of the points of Zd as trees, and 
the & as indicating the trees infested by gypsy moths. 

The system evolves according to the following rules: 
If s € & , P (**6+a |&) = * + *(«). 
If x £ ft> P(x € £t+a|&) = As(# of occupied neighbors) + o(s). 
Here o(s) means that the missing terms when divided by s go to 0 as 

s -» 0. For readers familiar with Markov chains, the rules may be ex
pressed as: particles die at rate one, and are born at vacant sites at rate 
A(# of occupied neighbors). 

If you are not familiar with Markov chains, that is not important: we will 
now construct the process from a graphical representation. For each x let 
{T£, n = 1,2,... } be a Poisson process with rate 1, i.e., if we let T§ = 0 then 
T£ — T£_x are independent random variables which have 

P(TZ-TZ_1>t) = e~t 

At times T^, n = 1,2,..., we write a 6 (for death) to indicate that if x was 
occupied at time T% it will become vacant. 
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To take care of the births we introduce a Poisson process {T%>y, n = 
1,2,...} with rate À for each pair of neighbors x, y, i.e., if we let TQ 'y = 0 
then T£>y - T ^ , n = 1,2,..., are independent random variables which have 

P(r^-T^>0 - e~xt. 

At times T%'y, n = 1,2,..., we draw an arrow from x to y to indicate that if 
x is occupied at time T£>y then y will become occupied at that time (if it is 
not already occupied). 

- 2 - 1 

FIGURE 5 

Given the "graphical representation" described above, we can construct the 
contact process in a manner which should remind the reader of the percolation 
processes discussed in the last two sections. (The reader should consult Figure 
5 for help with the definitions.) We say there is a path from (x,0) to (y,t) 
and write (x, 0) —• (y, t) if there is a sequence of times so = 0 < si < • • • < 
sn < sn+i = t and spatial locations xo = x, x i , . . . , xn = y so that 

(i) for i = 1,2,..., n there is an arrow from X{-\ to Xi at time s*, and 
(ii) the vertical segments {x{} x (S ; ,S Ï+I ) , i = 0 ,1 , . . . , n do not contain 

any £'s. 
If there is a path from (x, 0) to ($/, t) and x was occupied at time 0 then y 

will be occupied at time t. Given this we define the contact process starting 
from f o = ^ by 

& — {v- there is an x in A so that (x, 0) —• (y, t)} 

(in the realization drawn in Figure 5, £t
{0} = {-1,2}, ft

{1} = {2}, and ft
{2} = 

0 ) . 
From the descriptions above, it should be clear that the contact process 

is a continuous-time percolation process. With this analogy in mind, we let 
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Qoo = {$ # 0 for all t} (where ft° is short for Q0}) be the event that the 
process does not die out, starting from a single individual at 0, and let 

Ac = inf{A:P(noo)>0}. 
This time, in contrast to the last two sections, we do not know the value of Ac, 
but in the study of interacting systems, this situation is typical and the last 
two models are the exceptions. Two results about Ac worth mentioning are: 
(i) It is easy to show Ac > l/2d. (A particle with no occupied neighbors gives 
birth at rate 2dX and a particle with some occupied neighbors gives birth at 
a smaller rate. All particles die at rate 1 so if 2dX < 1 the process dies out.) 
(ii) A clever argument of Holley and Liggett (see §VI.l in Liggett (1985b)) 
shows Ac < 2/d. The second bound is good in low dimensions and the first in 
high dimensions. Numerically Ac = 1.65 in d = 1, Ac = 0.41 in d = 2, and it 
has been shown that 2dXc —• 1 as d —• oo. 

In §§1 and 3 we have seen that starting from a finite set the system expands 
linearly and has an asymptotic shape. This is true again here, but we will have 
to introduce a few concepts to state the limit result. We begin by considering 
what happens in the process f * starting from all sites occupied, i.e. £Q = %d-
Now Zd is the largest state (in the partial order D) , and the construction 
of the model described above has the property that if we use it to run two 
versions of the process Çf and Çf starting from initial states A D B, then 
we will have tf D f f for all t. If we let A = Zd and B = f * in the last 
observation, then we see that f* is larger than f£+a in the sense that the two 
random sets can be constructed on the same space with f* D Çl+3. Once one 
understands the last sentence, a simple argument shows that, as t —• oo, £* 
decreases to a limit we call ££,, where the convergence occurs in the sense 
that 

P(tf n C # 0 ) I P ( & nC^0) for all finite sets C. 
It follows from Markov chain theory that ^ is an equilibrium distribution 
for the process, i.e. if the initial state has this distribution, then this will be 
the distribution at all £ > 0. If A < Ac then ^ is not interesting—it is 0 
with probability 1—but if A > Ac it is a nontrivial equilibrium distribution. 
The reader will note that A = Ac has been left out in the last statement. 
Presumably this value falls under the first case [recall that the results of §2 
show that there is no percolation when p = pc and the equivalence of models 
demonstrated in §3 shows that the forest fire dies out at the critical value], 
but this is a very difficult open problem. 

With the equilibrium distribution introduced, we are now in a position to 
describe the limiting behavior starting from a finite set. Suppose we use the 
construction above to run two versions of the process, one starting from a 
finite set A and the other starting from all of Zd occupied, and we call the 
two resulting processes f^ and £*. The "shape theorem" in this setting is: 

(1) THEOREM. If A > A* then there is a convex set D so that if Çf ^ 0 
for all t, then for any £ > 0 we have 

for all t sufficiently large. 
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The statement of the result is made contorted by the fact that £f may 
become 0 , in which case it stays 0 for all time. The theorem tells us that 
when this does not occur £f looks roughly like ^ n tD, or, in words, it is a 
linearly growing "blob in equilibrium". Last but not least, we have A* instead 
of Ac in the statement of the theorem. (Unfortunately this is not a typo!) To 
explain what A* is and why we think it is equal to Ac will take some time. 
For the moment however this is not relevant. We will begin by discussing the 
case d = 1, where the result is known to hold for all A > Ac. 

Let £t~ denote the contact process starting from ÇQ = {0, —1, - 2 , . . . } and 
let rt = sup ft"~ be the rightmost occupied site at time t. If we let rSft = 
sup{y — rs : (z, s) —• (y, t) for some x < rs} then a moment's thought reveals 

ra + ra,t > r t ; 

so rt is subadditive, and it follows from the result quoted in §1 that with 
probability one as t —• oo 

(2) rt/t-K*(X)=udE(ra/8). 
s 

The main reason for interest in the "edge speed" a(A) is that it enables us 
to characterize the critical value as 

(3) Ac = inf{A : a(A) > 0} = sup{A : a(A) < 0}. 

We have already explained this result in one survey article (Durrett (1984)), 
so we will not give all the details again here. The key to the proof is the 
following coupling result. 

(4) If A = [a, b] and A C B then on {$* ^ 0 } we have 

where if = inf £/* and rf = sup £f. 
(4) is proved by checking that every transition preserves this equality. 

Applying (4) with A = {0}, B = { 0 , - 1 , - 2 , . . . } , and letting if = rt
{0}, 

/o = f{°> we see that if a(A) < 0 then on f^ = {£? ^ 0 for all t} we have 
ft < U —• — oo and by symmetry l® —• oo, a contradiction, which proves that 
Qoo has probability 0. 

The converse is more difficult to prove but the result should be intuitive: 
if a(A) > 0 then an interval has a tendency to grow. (2) and the coupling 
result (4) imply that if M is large 

P ( r | - A / ' M | > 4 - M ' M 1 f o r a i n ) > 0 , 

so the contact process has positive probability of surviving starting from 
[—M,M] and hence also when it starts from {0}. The tricky part of the 
proof of (3) is to show the second equality, i.e., to rule out the possibility that 
a(A) = 0 on an interval. 

In the last two paragraphs we have essentially proved the theorem in d = 1. 
Using (4) with A — {0} and B = Z gives 

tf = <;fn[/°,r°]onUtV0} 
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and again with A = {0} and B = (—00,0] gives 

r° = rt on {£> # 0 } . 

Combining the last result with (2) and using symmetry shows that on f^ = 
{ £ 0 ^ 0 for all t} we have with probability one 

r? / i ->a(A) and /°/* —-a(A) , 

so the conclusion of (1) holds with D = [—a(A),o?(A)]. 
In rf > 1 things are much more difficult because we do not have a good way 

of characterizing Ac and the coupling result (4) breaks down. The first result 
in d > 1 was proved by Durrett and Griffeath (1982) who showed that the 
result was valid for À > AC(Z), the critical value for the contact process on 
Z. Looking at that paper now (it is 18 journal pages of computations with 
lots of details left to the reader) I can sympathize with the referee who read 
the first twelve pages of the preprint and then skipped to the end to inform 
us that we had misspelled his name in the list of references. [In a daze, he 
signed his report, so his identity is not a conjecture.] 

The basic ingredient which goes into the proof is, as the reader can probably 
guess by now, subadditivity of the first-infection times t(x) = inf{£: x € £?}. 
As in §3 these times can be 00 but if we condition on QQO = {$ ^ 0 for all t} 
they are all finite. That (as the old joke goes) is the good news. The bad 
news is that we have to find a way to define t(x, y) so that subadditivity holds 
(or almost holds) and it has the same distribution ast(y — x) conditioned on 
O»-

If |x| = n the solution is to wait until $ gets within n1/2 of x and then 
pick a particle in $ D {z: \x — z\ < n 1 / 2 } . If the particle we picked has 
offspring at all later times then we let t(x,y) be the time lag until one of 
its offspring reaches y. If the family line of the particle we picked dies out, 
we wait until the last of its offspring dies (and if necessary until the process 
reenters {z: \x - z\ < n1/2}) and then pick another particle. Each time we 
pick a particle we have a positive probability of finding a process which lives 
forever so we will eventually find a family line which lives forever. When we 
do this we let t(x, y) be the time lag from the choice of the particle who starts 
the family which lives forever until y is infected by one of his descendants. 

The construction in the last paragraph gives a family of random variables 
t{x,y) which is not quite subadditive (we have left out the unsuccessful at
tempts), but close enough to use Richardson's (1973) result to conclude the 
existence of radial limits for all x € Zd\ 

(5) *(0, kx)/k -> c(x) on {£? # 0 for all t}. 

As before if we extend the first-passage times to all x € Rd it is easy to show 
that the last result remains valid. This only takes care of the first-infection 
times, but there is enough muscle in the proof to show that if e > 0 then with 
high probability $ contains £f D {x: t(x) < (1 — e)t}. To do this one uses 
embedded one-dimensional processes which come from restricting £t to a line 
and the coupling result (4) above. 
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The summary above is admittedly a little sketchy but giving more details 
would be worse. Fortunately things have been arranged so that no one will 
ever have to read the paper in question. Durrett and Griffeath (1982) proved 
a general "shape theorem" that other people can use. We will only state the 
result for the contact process. See the paper for precise assumptions. Let t(x) 
and r° be as above. Let Ht = {x: t(x) < t} and Kt = {x: ${x) = &(x)}, 
where £t* denotes the process starting from £t* = Zd and fj(x) = 1 if x G f| 
and 0 otherwise. Here Ht stands for the set of points hit by time t and Kt is 
the set where the two processes are "coupled". 

(6) Suppose P(r° = oo) > 0 and there are constants C, 7, S G (0,oo) so 
that 

P(t < r° < 00) < Ce-*, 

and if |x| < St then 

P(t(x) > t, T° = 00) < Ce~^. 

Then there is a convex set D so that for any e > 0 w e have 

(1 - e)tD n Zd C Ht C (1 + e)tD 

for all t sufficiently large on {r° = 00}. If in addition 

P(x <£ Ku T° = 00) < Ce~^ 

for |x| < 6t then for any e > 0 we have 

(1 - e)tD n Zd c Ht H Kt C (1 + e)tD 

for all t sufficiently large on {r° = 00}. 
The hypotheses in this result are quite strong but (a) they appear as lemmas 

in every "shape theorem" that I know of, and (b) it is widely believed that 
they hold whenever À > Àc. In any case checking them is much less work 
than repeating the proof. In (1987) Durrett and Schonmann used the last 
result to improve what is known about the contact process in d dimensions. 
They showed that by using the renormalized bond construction of Durrett 
(1984) one could avoid using the coupling result (4) in the study of the one-
dimensional contact process. This observation allowed them to (i) generalize 
the results about the contact process to a class of finite range systems (i.e. the 
birth and death rate at x may depend on the state ofx — L,... ,x + R where L 
and R are finite) and (ii) show that for any L the shape theorem holds for all 
A > XC(Z x {—L,...,L}d-1), the critical value for the contact process on the 
indicated set. As L Î 00 the right-hand side decreases to a limit A* which is 
the constant in (1). Presumably A* = Ac but this is a difficult open problem. 
To see that there is something to prove here observe that Ac({—L,...L}) = oo 
but \C{Z) < 00. 

NOTES. Durrett and Schonmann (1987) can be consulted for a more com
plete account of the results given above. 

5. Crabgrass. In this process the state at time t is & C Zd/M = 
{z/M: z € Zd} and M is a large integer. Think of a lawn which consists 
of a lot of plants with a small spacing between them and forget about the fact 



136 RICHARD DURRETT 

that there is probably more than one type of weed. With this (and the contact 
process in mind), we say two points x and y are neighbors if ||a: — 2/||oo < 1> 
and formulate the dynamics as follows: 

If x G & then P(x i & + a | 6 ) = s + o{s). 
If x £ & then 

P(z € ft+s16) = / M # °f occupied neighbors)/v(M) + o(s), 

where the o(s) was explained in the last section, and v(M) = (2M + l ) d — 1 = 
the number of neighbors a point has. (v is for volume.) 

The normalization above is chosen so that the birth rate from an isolated 
particle is /?, and hence the critical value 

PC(M) = inf{/?: P(&° ^ 0 for all t) > 0} 

satisfies 0C{M) > 1. At first glance, increasing the range of the interaction 
makes the process more complicated, but in fact as M —• oo things get much 
simpler: /?c (M) —• 1 and if we fix /3 > 1 then 

P(tf ?É0 for all * ) - ( / ? - l ) / / î . 

The right-hand side is the probability of survival for a branching process— 
a system in which particles die at rate 1, reproduce at rate /?, and are not 
limited by the restriction of at most one particle per site. 

Intuitively the results above say that the contact process behaves like the 
branching process when M is large. This is clear when Ç® is small. The 
difficulty in proving this is that the number of particles in a branching process 
with P > 1 grows like exp((/? - l)t) so the contact process begins to notice 
that it is not a branching process when t is about C<f(logM)/(/? — 1), and in 
the last two statements we are letting t —• oo before M —• oo. This problem is 
not too difficult to remedy, but the solution relies on a number of facts about 
the behavior of branching processes, so we will content ourselves with stating 
the result. 

(1) As M —• oo we have 

f 1 + C/M 2 / 3 d = l , 
/3C{M) « \ 1 + C(logM)/M2 d = 2, 

[ 1 + C/Md d > 3, 

where « means that if C is small (large) then the right-hand side is a lower 
(upper) bound on /3C(M). 

To explain the result we note that 1 + C/Md is a trivial lower bound which 
holds in any dimension—that much birth rate is wasted by particles giving 
birth on top of their own offspring. With this in mind the result says that 
the trivial bound is correct in d > 3, the wrong power in d = 1, and needs 
logarithmic corrections in d = 2. The structure of this result illustrates the 
concept of a "critical dimension dc" which is one of the most tantalizing open 
problems about percolation and interacting particle systems. When d > dc 

(reputed to be 6 for percolation and 4 for the contact process) the behavior 
of the system is "trivial". For percolation (or the contact process) this means 
that the percolation probability goes to 0 like (p — pc)^ and: J3 = 1 when 
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d> dc, there are logarithmic corrections when d = dc, and when d < dc ft is 
an interesting number < 1. (For percolation in d = 2, /? is conjectured to be 
5/36.) At first glance (1) above might seem to contradict physicists' claims 
that dc = 4, but in actuality it is support for their viewpoint. Critical values 
for the Ising model (which has dc = 4) satisfy a result like (1). 

A complete explanation of the last paragraph is beyond the scope of this 
article and will not be attempted here. Returning to our main subject, our 
next point is to observe that if we keep /? and t fixed as M —• oo, we get a 
situation which is easy to analyze but which still says something interesting 
about the time evolution of the process and the asymptotic behavior of an 
associated nonlinear equation. Consider a sequence of initial states in which 
sites are independently designated as occupied or vacant and with P(x € 
fo*) —* u(x,0) uniformly on compact sets. (Here the superscript indicates 
the lattice spacing, not the initial configuration). In this case it turns out 
that u\f(x,t) = P(x G ftM) converges uniformly on compact sets to a limit 
u(x, t) which satisfies 

(2) du/dt = -u + /?(1 - u){u * V), 

where 
(u * ip)(x) = / u(y)ip(x - y) dy 

and 
iP(y) = ( l /2)d if ||î/l!oo < 1. 

The last result is easy to prove and the proof illustrates an important con
cept called "duality" for interacting particle systems, so we give the proof 
here. We begin by observing that the graphical representation used to con
struct the contact process in the last section can be adapted to construct the 
crabgrass process. For each x we have a rate 1 Poisson process {T*, n = 
1,2,...} of £'s which kill a particle at x if one is present, and for each pair 
of points x and y with ||x — y||oo < 1 we have a rate f3/v(M) Poisson process 
{T^'y, n = 1,2,...} of arrows from x to y which cause a birth at y if x is 
occupied and y is vacant. 

Given the graphical representation we can define (x, 0) —• (y, t) as we did 
in the last section and let 

^ = {y. there is an x in A so that (x,0) —• {y,t)}. 

(here and in what follows superscripts A, B, or x indicate the initial config
uration). When computing Çf on an actual realization it is easier to work 
backwards from time t to time 0 and this leads naturally to the definition of 
a dual process: if s < t let 

if = {x: (x, t - s) —• (y, t) for some y € B}. 

From this definition it should be clear that 

(3) # n B = 0 if and only if ct
BnA = 0. 

A little more thought reveals that if we change time s = t — s and reverse the 
direction of the arrows in the graphical representation then çf is the set of 
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points at time s which can be reached by starting from B at time 0. The new 
graphical representation is made from the same types of Poisson processes as 
the old one, so çfs < t has the same distribution as £^s < i Q^ t n e relation 
(3) can be written as 

(4) P(£* n B = 0 ) = P(£f n A = 0 ) . 

The "duality equation" (4) is the key to the result about UM(Z, t) = P(x € 
£t*) quoted above. The first step is to prove that UA/OM) has a limit. To do 
this we observe that if we let A = Ççjf and B = {x} in the duality equation, 
we get 

(5) P (s^ , w ) = P(tfn£o
M = 0), 

and that as M —• oo, £f converges in distribution to a branching random 
walk Zf in which particles die at rate 1, and at rate /? give birth to new 
particles which are displaced from their parents by a random amount which 
has a uniform distribution on [-1, l]d. To prove the last claim we observe that 
if we ignore deaths and births lost to occupied sites then the process would 
behave like a branching process in which births occur at rate /3 and hence 

(sup ICl) < ** 

the right-hand side being the expected number of particles at time t in the 
process with no deaths. Using Markov's inequality with the last result shows 

P ^ s u p l ^ l ^ M ^ ^ o . 

Now if f f always contained M 1 / 3 particles and if by some unfortunate accident 
£f was contained in some cube of side 1, then each particle would be giving 
birth at rate f3 and a newly created particle would land on another particle 
with probability M1^3/v(M). Even under these extreme conditions simple 
results about the Poisson process imply that the probability of some particle 
landing on another one is less than 

pt • M 1 / 3 • Af 1/3/v(Af) - • 0 

as M —• oo. 
Combining (5) with the fact that P(y € Çç*) —• u(x,0) uniformly on com

pact sets shows 

(6) P ^ ^ M ^ E nt1-^'0)) 
Ly€Zf 

To see that the limit satisfies the indicated equation we observe that consid
ering what can happen in [£, t + 6] and letting 6 —• 0 gives 

jt?{x € tf) = -P(x € tf) + (P/v(M)) • £ P(x * tf, y € Çt
M) 

where "y ~ x" indicates that the sum is over all the y which are neighbors of 
x. Now v(M) « (2M + l)d so if we can replace the probability in the sum by 
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P(x ^ CtVf)P(î/ £ tt*) (i-e-î m ^ne limit the two events are independent) then 
the sum will approach 

(l-u) u(y)tp{x-y)dy, 

where 
</>(*) = (l /2)d i f | M | o o < l 

and we will have shown that (2) holds. 
To show that the two events are asymptotically independent we observe 

that by duality 

p(x t ef, y € &) = pee? n & = 0, et n & ? 0) 
and an extension of the reasoning used above shows that the probability a 
particle in Çf will give birth to a particle which lands on £f goes to 0, so in 
the limit ff and ff behave like two independent branching processes. 

The result in (2) is useful because it tells us something concrete about the 
time evolution of the process when M is large, and although the information 
is not very explicit, it is much better than what we know about the contact 
process. It is interesting to note that by using (6) and some facts about 
branching random walks we can show that there is a convex set D so that 
starting from compactly supported nonzero initial data 

( 7 j u(x,t)~^Q Xxt(l + e)tD. 

We begin by recalling some facts about branching random walks. Let Z® 
be a branching random walk starting from a single particle at 0 and let Z®(A) 
be the number of particles in A at time t. It is easy to compute the expected 
value of Zt(A). Let St be a continuous-time random walk which takes steps at 
rate /?; i.e., the probability it stays in one place for t units of time is exp(—f3i) 
and when it leaves x it jumps to a new place x+2/, where y is chosen according 
to a uniform distribution on [—1, l]d. In terms of St the expected value can 
be written as 

(8) E(Zt(A)) = e^-^P(SteA). 

The first factor gives the expected number of particles in Zt° so the equation 
can be interpreted as saying if we pick a particle at random from those in Zt° 
its location has distribution St. 

(8) relates the mean number of particles in A to a random walk probability 
and since the first factor grows exponentially it brings us to a question of 
large deviations for the random walk. By now it is well known that there is a 
function h(x) so that if B is a closed set so that the Lebesgue measure of dB 
is 0 then as t —• oo 

(9) (1/0 log P(St e tB) - • sup h(x), 
xeB 

where h(x) < 0 for x ^ 0. In the case under consideration h can be described 
as: 

(10) h{x) = inf(-x • 0 - 0(1 - fc(0))), 
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where 

k{6) = f[sinh(^) = f • • fedy dy/2d. 
i _ 1 l l!/l loo<l 

The last result takes a while to prove but it is not hard to see why it is 
the answer. k(0) is the "moment generating function" of the distribution of 
a single step. The random walk takes a Poisson mean fit number of steps in 
time t so 

E(exp(0 • St)) = £ e-*y¥£-k($)» = exp(-/»(l - *(*))). 
n=0 

If x 0 > 0 then using Markov's inequality on the last quantity gives 

etx6P{St -0>tX'0)< E(exp(5t • 0)). 

Taking logs of both sides and dividing by t gives 

(1/0 log P(5 t • 0 > tx • 0) < -x • 0 -h /9(1 - *(*)). 

This last result holds for all 0 with x • 0 > 0. To get the best possible bound 
from this, we minimize over 0 (and observe that this will occur when x -0 > 0), 
and the result is the expression in (10). 

Having derived a formula for h(x) we will now ignore it for the rest of the 
proof of (7). (9) gives us 

(1/0 log E(Zt{tB)) - (/? - 1) + sup h{x), 
xeB 

so we guess that (7) will hold with 

D = {x: ( / ? - l ) + fc(z) > 0 } . 

Since 
P(Z?(tB) > 1) < E(Z?(tB)), 

letting B = [(1 4- e)D]c shows us that if e > 0 then with high probability Zt 

will have no points outside of t(l + e)D. If u(-, 0) has support in K and x £ D 
then using (6) and the last observation gives 

l-u(tx,t) = E I l (1-«(¥>*)) 
vez** 

>P(Zf*n/r = 0)->i 

as £ —• oo. 
The last conclusion proves half of (7). To prove the other half let HQO = 

{\Z?\ > 0 for all 0 , and observe that P ^ ) = (/? - 1)/^. Then a result of 
Biggins (1978) shows that if (/? — 1) + ft(x) > 0 then except for a set with 
probability 0 we have 

(l/01ogZ?(xt + ( - l , l ) d ) ^ ( / J - l ) + ft(^) 

on HQO as f —• oo. The last result holds if (—1, l)d is replaced by any open 
set. Using this it is easy to see that if x is in the interior of the set D defined 
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above then when t is large either Zf* = 0 or (1/t) log Z^^y: u(y,Q) > 0}) 
( / ? - ! ) + h(x), so 

1 — u(tx, t) = E n u-̂ M)) 
vez*' 

= P(Z?t = 0 ) + o(l), 

where o(l) stands for a term which goes to 0 as M —• oo, and this proves the 
second half of (7). 

NOTES. The proof of (1) will appear in Bramson, Durrett, and Swindle 
(198?). (7) and related questions are the subject of Swindle's dissertation and 
of the author's current research. 

Appendix. In this section we will explain some of the unfamiliar words 
and results used in the paper. Most of these terms are concepts from measure 
theory which have been renamed. The stage on which all the action takes 
place is called a probability space. It is usually denoted (Q, 7, P) where Q is 
a set, 7 is a er-field of subsets of fi, and P is a probability measure; as in this 
article, it almost never explicitly appears. 

Sets A G 7 are called events and measurable functions X(u) are called 
random variables. When we integrate a random variable over the entire space, 
i.e. 

[ X(u)dP(u>), 

the result is called the expected value of X and denoted E(X). The next 
two results will give the reader practice with this notation and introduce two 
more. Observe that Fubini's theorem implies: 

(1) If X > 0 then 

EX = E I ƒ 1{W: x{u)>x}dx\ 

- r ' 
Jo 

oo 

P(X > x) dx, 
0 

where IA{U) — 1 if ^ 6 A and 0 otherwise (it is "1 on ^4"). 
Common sense gives us Markov's inequality: 
(2) If X > 0 and ƒ > 0 is nondecreasing on [0, oo) then 

E/(X) > E(f(X)l{x>x}) > f(x)P(X > x), 

SO 

P(X>x)<E(f(X))/f(x). 

Last but not least, we have the notion which makes probability different 
from measure theory: independence. Two events A and B are said to be 
independent if P(A H B) = P(A)P(B). Two random variables are called 
independent if for all x and y 

P(X <x,Y<y) = P{X< x)P{Y < y) 

The fundamental fact about independent random variables is the strong law of 
large numbers. Let X i ,X2 , . . . be a sequence of independent and identically 



142 RICHARD DURRETT 

distributed random variables, i.e., they all have the same distribution function 
F(x) = P(Xi < x). If E|X| < oo and EX = p then with probability one (or, 
more formally, for almost every u in the underlying space Ü) 

(X1-h--- + X n ) / n - ^ / i 

as n —• oo. This is the "fundamental theorem of statistics": as n —• oo, the 
average of the first n observations approaches the mean // (another word for 
expected value). 
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