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CONTROL VARIATIONS WITH AN INCREASING 
NUMBER OF SWITCHINGS 

MATTHIAS KAWSKI 

1. Introduction. The purpose of this paper is to introduce new families 
of control variations and exhibit how they lead to high-order conditions for 
controllability which cannot be obtained by the usual methods. Also, we 
explain why the underlying phenomenon is likely to be very important for the 
synthesis of (time-optimal) feedback. 

Suppose X(x) and Y (x) are real analytic vectorfields on Rn with X(0) = 0. 
They give rise to the single-input affine control system 

U U(0)=0, 

where the control u is a measurable function defined on some interval [0, T] 
with bound eo > 0. The solution to (1) with control u is denoted by x(t,u). 
The attainable set at time t (with control bound So) is A£o{t) = {x(t,u) : 
KOI < £o}. The system (1) is small-time locally controllable (STLC) if A£o{t) 
contains the rest solution x = 0 in its interior for all eo, t > 0. 

Let L(Y, X) be the Lie algebra generated by the vectorfields Y and X, and 
L(Y,X)(p) = {W(p) : W € L(Y,X)} for a point p e Rn. A consequence 
of the Hermann-Nagano Theorem is [13]: If L(Y,X)(0) is the full tangent 
space at zero then int A£o{t) ^ 0 for all eo, t > 0, and in the case of analytic 
vectorfields the converse is true, also. Sometimes referred to as the Second 
Nagano Theorem is [10], loosely speaking: Up to diffeomorphisms all local 
properties of (1) are determined by the values of the iterated Lie brackets 
of X and Y at zero. In view of this it is natural to look for necessary and 
suflBcient conditions for STLC in terms of Lie brackets of Y and X at 0. In 
recent years substantial progress in this direction has been made, e.g. [2, 4, 
5, 8, 12]. 

All suflBcient conditions for STLC known today, and also the Pontriagin 
Maximum Principle and the High Order Maximum Principle [6], have in com
mon that their proofs crucially rely on continuously parametrized families of 
piecewise constant control variations {us}s>o (in this case of the zero control 
UQ = 0) with a fixed number of jumps, the parameter s being closely related 
to the amplitude of the control variation us and/or the length of the time 
intervals on which it is different from the reference control. 
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The families of (also piecewise constant) control variations introduced here 
will be parametrized by a discrete parameter closely related to the number of 
jumps which will grow to infinity as s approaches zero. 

To obtain sufficient conditions for controllability (or, equivalently, neces
sary conditions for optimality) one typically uses these families of control 
variations to generate approximating cones (of tangent vectors) to the at
tainable set(s) which lead to the desired results via a suitable open mapping 
theorem (e.g. [3]). 

The underlying phenomenon is likely to also be very important for the 
study of regularity of optimal controls (and thus for the synthesis of optimal 
feedback): It is known that for linear systems the optimal controls may be 
taken to be bang-bang (i.e. with values in the vertices of the control set only, 
here ±1) with an a priori bound on the number of switchings [11]. In the non
linear case singular arcs may occur, but recently for low dimensional generic 
systems bounds for the number of bang/singular pieces of the optimal con
trols (trajectories) have been obtained [1, 7]. Finally, optimal controls with 
accumulation points of switching times may occur, giving rise to Fuller curves. 
The relation between such controls with infinitely many switchings and the 
families of controls with an increasing number of switchings introduced here 
might be another interesting object of study, but one which here we shall not 
pursue further. 

Also, the systems which only can be controlled by means of these new fast 
switching controls typically have attainable sets that grow at very different 
rates in (at least two) opposite directions, which may be of interest in the 
theory of PDOs since the attainable set as considered here is closely related to 
the region on which a strong maximum principle holds [9] (for the hypoelliptic 
operator associated to the control system (1)). 

2. The result. We will use these new families of control variations to 
show that a certain system on R4 is STLC; and we also prove that the use of 
these fast switching variations is essential, in the sense that the system cannot 
be controlled (in small time) by using the standard families of variations. 

The given system stands for a wide class of systems of form (1) all exhibiting 
this behavior; but for the clarity of the argument we will do the calculations 
for this one typical system only. (A general theorem will be the subject of a 
forthcoming paper.) 

The system under consideration is 

( x\ = ii, x(0) = 0, 

(2x I *2 = zi , \u{t)\<e0, 

I *3 = X\, 
I 2 7 
^ X4 — £ 3 — X 2 . 

Writing this system in the standard form x = X + uY, one easily computes 
the two brackets which in this case ultimately determine whether the system 
is STLC (here (adV,W) = [V,W] and (ad i +V,W) = [V,(adV,ttO]): 

^'(0) = 4(ad2(ad3y,X),X)(0) = d/dx4 
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and 

W2(0) = ^ (ad 7 [X,nJT) (0) = d/dxA. 

By a standard homogeneity argument (which essentially amounts to counting 
the factors X and Y in the brackets Wl and W2), one expects for sufficiently 
small time t the definite term x\ in the last component of (2) to dominate the 
indefinite term x\, i.e. x±(t,u) > 0 for t small, or more precisely one expects 
the intersection of the negative X4-axis with the attainable set to be empty 
for small positive times and control bounds. However, here we show: 

CLAIM 1. The system (2) is STLC. 
CLAIM 2. If for fixed N E Z+ the class of admissible controls is restricted 

to those s.t. the function t —• x\ (£, u) = f0 u(s) ds changes sign at most N — l 
times, then x4(T, u) > 0 if xx(T, u) = 0 and N7 < e3/4T7/2 . 

It can be shown [5] that the system (2) is not STLC if x\ is replaced by 
x™, m > 8. 

Note, that Claim 2 in particular contains the two cases when u is piecewise 
constant with at most N jumps and when u is piecewise smooth and changes 
sign at most N times. 

The consequences for the synthesis of (time-) optimal feedback are not 
yet completely understood: From Claim 2 we know that the optimal con
trols/trajectories must be bad, however the switching surfaces still may be 
nice, e.g. a locally finite union of embedded manifolds. 

In the following we outline the proofs of the two claims, emphasizing the 
role of the new control variations. 

To prove Claim 1, we show that there are constants C, m > 0 such that for 
all positive times T > 0 the attainable set at time T contains points of the form 
(0,0,0, -CTm + o(Tm)). The result then follows from well-known sufficient 
conditions for STLC and a standard argument using convex approximating 
cones. 

Start with fixing a control û: [0,T] —• [—1,1] (for some T > 0), such that 
xi (T, ü) = x3(T, u) = 0 and x2(T, u) > 0. 

We denote by ö" 1 the time-reversed control (defined by ü -1(£) = ü{T—i)), 
and inductively define via concatenation U\ = û~1 * û and ük = û~1 * ük-i * 
û : [0,2kT) - • [-1,1]. Finally for any given t0, e0 > 0 let 8 = S(k) = t0/(2kT) 
and Uk'. [0,£o] -+ [—£o>£o]> u>k{Ôt) = £oü*(0- One easily verifies Xi(T,Uk) = 0 
for i = 1,2,3 and 

x4(T, uh) = e%t9
0k-*C41 - 4'o5*~7(<?42 + 0(l/k)) 

with constants C41, C42 > 0 depending on the initial choice of ü only. 
Thus for k sufficiently large, i.e. k = fc(£o>*o) = ^SQ1^6, we obtain 

x(^o,^) = (0,0,0,-C^7 + o(^7)) 

(C > 0 and K > 0 are constants). 
To prove Claim 2, let u: [0,T] —• [—£,e] be such that xi(-,ii) changes 

sign at most N - 1 times, xi(T,i/) = 0 and N7T7/2e3/4 < 1. Choose times 
0 = to < ti < • - • < tr = T (r < iV), such that xi\[tjitj+1] is of constant sign, 

j = 0 , 1 , . . . , r—1. We write A = / 0 x£(s, u) ds and we may assume 0 < A < 1. 
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Find Tx G (0,T) such that x2(Tuu) > (A/T)1/7 = B. Thus x2(-,tx) increases 
by at least C = B/N on at least one subinterval Ij0 = foo'^io+i]- Since 
x\ (•, u) is nonnegative on Jj0, we may use the Holder inequality without having 
to introduce absolute values and thus may conclude 

*3(ijb+i.f) - x3(tj01u) > C3/T2 = D. 

W.l.o.g. we may assume xz(tjQ,u) < —\D < 0 (else xz{tjQ+\,u) > +\D > 0 
leads to similar calculations), and using \u(-)\ < e and x\{tjQ) = 0 we know 
x3(tjo +8,u)<-\D+ \e3s4 for 0 < s < s0 = {2De3)^4 and finally 

rT ra0 / A \ 27/28 
/ xl{s,u)d8>] ( - iD+i^^^M N-27t*e-z!AT-»t2>A, 

which finishes the proof of Claim 2. 
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