DYSON'S CRANK OF A PARTITION

GEORGE E. ANDREWS AND F. G. GARVAN

1. Introduction. In [3], F. J. Dyson defined the rank of a partition as the largest part minus the number of parts. He let $N(m, t, n)$ denote the number of partitions of n of rank congruent to m modulo t, and he conjectured

$$
\begin{array}{ll}
N(m, 5,5 n+4)=\frac{1}{5} p(5 n+4), & 0 \leq m \leq 4 \\
N(m, 7,7 n+5)=\frac{1}{7} p(7 n+5), & 0 \leq m \leq 6 \tag{1.2}
\end{array}
$$

where $p(n)$ is the total number of partitions of $n[1$, Chapter 1$]$. These conjectures were subsequently proved by Atkin and Swinnerton-Dyer [2].

Dyson [3] went on to observe that the rank did not separate the partition of $11 n+6$ into 11 equal classes even though Ramanujan's congruence

$$
\begin{equation*}
p(11 n+6) \equiv 0 \quad(\bmod 11) \tag{1.3}
\end{equation*}
$$

holds. He was thus led to conjecture the existence of some other partition statistic (which he called the crank); this unknown statistic should provide a combinatorial interpretation of $\frac{1}{11} p(11 n+6)$ in the same way that (1.1) and (1.2) treat the primes 5 and 7.

In $[\mathbf{4}, \mathbf{5}]$, one of us was able to find a crank relative to vector partitions as follows:

For a partition π, let $\#(\pi)$ be the number of parts of π and $\sigma(\pi)$ be the sum of the parts of π (or the number π is partitioning) with the convention $\#(\phi)=\sigma(\phi)=0$ for the empty partition ϕ, of 0 . Let
$V=\left\{\left(\pi_{1}, \pi_{2}, \pi_{3}\right) \mid \pi_{1}\right.$ is a partition into distinct parts,

$$
\left.\pi_{2}, \pi_{3} \text { are unrestricted partitions }\right\} .
$$

We shall call the elements of V vector partitions. For $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ in V we define the sum of parts, s, a weight, ω, and a crank, r, by

$$
\begin{gather*}
s(\vec{\pi})=\sigma\left(\pi_{1}\right)+\sigma\left(\pi_{2}\right)+\sigma\left(\pi_{3}\right), \tag{1.4}\\
\omega(\vec{\pi})=(-1)^{\#\left(\pi_{1}\right)}, \tag{1.5}\\
r(\vec{\pi})=\#\left(\pi_{2}\right)-\#\left(\pi_{3}\right) . \tag{1.6}
\end{gather*}
$$

We say $\vec{\pi}$ is a vector partition of n if $s(\vec{\pi})=n$. For example, if

$$
\vec{\pi}=(5+3+2,2+2+1,2+1+1)
$$

Received by the editors August 13, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 11P76.
First author partially supported by National Science Foundation Grant DMS 8503324.
then $s(\vec{\pi})=19, \omega(\vec{\pi})=-1, r(\vec{\pi})=0$ and $\vec{\pi}$ is a vector partition of 19 . The number of vector partitions of n (counted according to the weight ω) with crank m is denoted by $N_{V}(m, n)$, so that

$$
\begin{equation*}
N_{V}(m, n)=\sum_{\substack{\vec{\pi} \in V \\ s(\vec{\pi})=n \\ r(\vec{\pi})=m}} \omega(\vec{\pi}) \tag{1.7}
\end{equation*}
$$

The number of vector partitions of n (counted according to the weight ω) with crank congruent to k modulo t is denoted by $N_{V}(k, t, n)$, so that

$$
\begin{equation*}
N_{V}(k, t, n)=\sum_{m=-\infty}^{\infty} N_{V}(m t+k, n)=\sum_{\substack{\vec{\pi} \in V \\ s(\vec{\pi})=n \\ r(\vec{\pi}) \equiv k(\bmod t)}} \omega(\vec{\pi}) . \tag{1.8}
\end{equation*}
$$

By considering the transformation that interchanges π_{2} and π_{3} we have

$$
\begin{equation*}
N_{V}(m, n)=N_{V}(-m, n) \tag{1.9}
\end{equation*}
$$

so that

$$
\begin{equation*}
N_{V}(t-m, t, n)=N_{V}(m, t, n) \tag{1.10}
\end{equation*}
$$

We have the following generating function for $N_{V}(m, n)$:

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} N_{V}(m, n) z^{m} q^{n}=\prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)}{\left(1-z q^{n}\right)\left(1-z^{-1} q^{n}\right)} \tag{1.11}
\end{equation*}
$$

By putting $z=1$ in (1.11) we find

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} N_{V}(m, n)=p(n) \tag{1.12}
\end{equation*}
$$

Vector-Crank Theorem (Garvan [4, 5]).

$$
\begin{equation*}
N_{V}(0,5,5 n+4)=N_{V}(1,5,5 n+4)=\cdots=N_{V}(4,5,5 n+4)=\frac{p(5 n+4)}{5} \tag{1.13}
\end{equation*}
$$

$$
\begin{align*}
& N_{V}(0,7,7 n+5)=N_{V}(1,7,7 n+5)=\cdots=N_{V}(6,7,7 n+5)=\frac{p(7 n+5)}{7} \tag{1.14}\\
& 1.15) \quad N_{V}(0,11,11 n+6)=\cdots=N_{V}(10,11,11 n+6)=\frac{p(11 n+6)}{11} \tag{1.15}
\end{align*}
$$

The above still leaves open the question of whether there is a crank for ordinary partitions. The answer is "yes" when the crank is defined as follows:

Definition. For a partition π, let $l(\pi)$ denote the largest part of $\pi, \omega(\pi)$ denote the number of ones in π, and $\mu(\pi)$ denote the number of parts of π larger than $\omega(\pi)$. The crank $c(\pi)$ is given by

$$
c(\pi)= \begin{cases}l(\pi) & \text { if } \omega(\pi)=0 \\ \mu(\pi)-\omega(\pi) & \text { if } \omega(\pi)>0\end{cases}
$$

Our main result is the following.
THEOREM 1. The number of partitions π of n with $c(\pi)=m$ is $N_{V}(m, n)$ for all $n>1$.

Obviously, in light of the Vector-Crank Theorem, we see that Theorem 1 supplies the crank asked for by Dyson.
2. Proof of Theorem 1. We shall require the standard notation of q-series:

$$
\begin{equation*}
(A ; q)_{n}=(A)_{n}=\prod_{j=0}^{\infty} \frac{\left(1-A q^{j}\right)}{\left(1-A q^{j+n}\right)} \tag{2.1}
\end{equation*}
$$

$\left(=(1-A)(1-A q) \cdots\left(1-A q^{n-1}\right)\right.$ when n is a positive integer $)$, and

$$
\begin{equation*}
(A ; q)_{\infty}=(A)_{\infty}=\prod_{j=0}^{\infty}\left(1-A q^{j}\right) \tag{2.2}
\end{equation*}
$$

We now transform (1.11):

$$
\begin{align*}
\sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} N_{V}(m, n) z^{m} q^{n} & =\frac{(1-q)}{(z q)_{\infty}} \cdot \frac{\left(q^{2} ; q\right)_{\infty}}{(q / z)_{\infty}} \\
& =\frac{(1-q)}{(z q)_{\infty}} \sum_{j=0}^{\infty} \frac{(z q)_{j}(q / z)^{j}}{(q)_{j}} \quad(\text { by [1, p. 17]) } \tag{2.3}\\
& =\frac{(1-q)}{(z q)_{\infty}}+\sum_{j=1}^{\infty} \frac{q^{j} z^{-j}}{\left(q^{2} ; q\right)_{j-1}\left(z q^{j+1}\right)_{\infty}}
\end{align*}
$$

As was noted in (1.12), when we set $z=1$ the series on the left of (2.3) reduces to the generating function for $p(n)$. For $j>0$, the j th term in the sum on the right is

$$
\frac{z^{-j} q^{1+1+\cdots+1}}{\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots\left(1-q^{j}\right)\left(1-z q^{j+1}\right)\left(1-z q^{j+2}\right) \cdots}
$$

The standard techniques of partition theory [1, Chapter 1] show that this expression generates partitions with $\omega(\pi)=j$ and the exponent on z is clearly $\mu(\pi)-\omega(\pi)$, i.e. $c(\pi)$, since $j>0$.

Thus we must interpret

$$
\frac{(1-q)}{(1-z q)\left(1-z q^{2}\right)\left(1-z q^{3}\right) \cdots}
$$

as the generating function for partitions without ones. By considering conjugate partitions, we note that

$$
\frac{1}{(1-z q)\left(1-z q^{2}\right)\left(1-z q^{3}\right) \cdots}
$$

generates all partitions with the exponent on z counting the largest part, and for integers larger than 1

$$
\frac{q}{(1-z q)\left(1-z q^{2}\right)\left(1-z q^{3}\right) \cdots}
$$

generates partitions with at least one 1 appearing again with the exponent on z counting the largest part. Note that this interpretation fails for 1 because this is the unique instance in which introducing a 1 into the partitions of $n-1$ alters the largest part. Hence

$$
\frac{1-q}{(z q)_{\infty}}
$$

counts (for $n>1$) the number of partitions with no ones and with the exponent on z being the largest part of the partition $l(\pi)=c(\pi)$. Thus in the double series expansion of

$$
\frac{(1-q)}{(z q)_{\infty}}+\sum_{j=1}^{\infty} \frac{q^{j} z^{-j}}{\left(q^{2} ; q\right)_{j-1}\left(z q^{j+1}\right)_{\infty}}
$$

we see that the coefficient of $z^{m} q^{n}(n>1)$ is the number of ordinary partitions of n in which $c(\pi)=m$. Therefore by (2.3), we have Theorem 1 .
3. Conclusion. We can't resist exhibiting $c(\pi)$ for the first instance of (1.3).

partitions of 6	$l(\pi)$	$\omega(\pi)$	$\mu(\pi)$	$c(\pi)$
6	6	0	1	6
$5+1$	5	1	1	0
$4+2$	4	0	2	4
$4+1+1$	4	2	1	-1
$3+3$	3	0	2	3
$3+2+1$	3	1	2	1
$3+1+1+1$	3	3	0	-3
$2+2+2$	2	0	3	2
$2+2+1+1$	2	2	0	-2
$2+1+1+1+1$	2	4	0	-4
$1+1+1+1+1+1$	1	6	0	-6

As Theorem 1 together with (1.15) predicts, $c(\pi)$ provides eleven different residue classes modulo 11 .

References

1. G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2 (G.-C. Rota, ed.), Addison-Wesley, Reading, 1976 (Reprinted: Cambridge Univ. Press, London and New York, 1984).
2. A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106.
3. F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15.
4. F. G. Garvan, Generalizations of Dyson's rank, Ph. D. thesis, Pennsylvania State Univ., 1986.
5. __ New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7 and 11, Trans. Amer. Math. Soc. (to appear).

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Department of Mathematics, University of Wisconsin-Madison, MadISON, WISCONSIN 53706

Current address (F. G. Garvan): Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota 55455

