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NUMERICALLY DETERMINING SOLUTIONS 
OF SYSTEMS OF POLYNOMIAL EQUATIONS 

T. Y. LI, TIM SAUER AND JAMES A. YORKE 

In this report we suggest some efficient algorithms for numerically deter
mining all solutions of a system of n polynomial equations in n unknowns. 
Such systems are common in many fields of engineering. When all equations 
are linear, there is at most one isolated solution. In the general case, even the 
number of solutions can be difficult to predict. 

By a classical theorem of Bézout, the number of isolated solutions of the 
system is bounded above by the total degree d = d\ • • dn, where d{ denotes 
the degree of the ith equation. Empirically, we find that most systems arising 
in applications have fewer than d solutions. We call such systems deficient. 
Our purpose is to describe some methods for which the computational work, 
instead of being proportional to the total degree, is proportional to the actual 
number of solutions. 

The first practical computer-implementable method for numerically solving 
polynomial systems was introduced in [D] (see also [GZ]) using arguments 
based on algebraic geometry. The authors of [CMY] reformulated this re
sult, replacing the algebraic geometry arguments with a general version of 
Sard's Theorem. The article [AG] presents a survey of homotopy methods 
for numerically solving systems of equations. 

Elimination theory is the classical approach to solving systems of poly
nomial equations, but its reliance on symbolic manipulation makes it seem 
unsuitable for all but small problems. Moreover, the method (unlike Gaus
sian elimination for the linear case) reduces the problem to the ill-conditioned 
problem of numerically solving a high-degree polynomial equation in one vari
able. In this paper, we use elimination theory and other techniques from alge
braic geometry as theoretical tools, but our algorithms avoid the computing 
of resultants. 

1. Random product homotopy. Let 

p i ( x i , . . . , x n ) = 0 , 

p n ( X i , . . . , X n ) = 0 

be the system of polynomial equations to be solved, i.e., P: C n —• C n , P = 
(p i , . . . , p n ) . Although we are only interested in computing the solutions in 

Received by the editors December 20, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65H10, 90B99, 65H15. 
The authors were supported in part by a contract with the Applied and Computational 

Mathematics Program of DARPA. 

©1988 American Mathematical Society 
0273-0979/88 $1.00 + $.25 per page 

173 



174 T. Y. LI, T. SAUER AND J. A. YORKE 

Cn , it is useful to view the system P{x) = 0 in projective space CPn . Let 
V (P)oo denote the solutions at infinity. Define the random product system 

q\{x\, •. •,xn) = (Ln{x) + 6n) • • • (Lidj(x) + bldl) 

qn{xu...,xn) = {Lnl{x) + bnl) • • • {Lndn{x) + 6nd») 

where the Lij(x) are fixed nonzero linear forms, and b^ € C. Note that 
Q(x) = 0 is trivial to solve. The choice of the Lt<7 will be tailored to the 
problem P(x) = 0 to be solved, and the number of solutions of Q(x) = 0 
will depend on the Uy Let H: C n x [0,1] -> Cn be defined by H{x,t) = 
(l-t)aQ(x) + tP(x). 

The object is to prove the existence of smooth paths connecting the trivial 
solutions of Q(x) = 0 to the unknown solutions of P(x) = 0. More precisely, 
we want to prove that the following two properties hold. 

1. Smoothness property. The solutions of H{x,t) = 0 with 0 < t < 1 
consist of a finite number of smooth paths, each parametrized by t in [0,1). 

2. Accessibility property. Every isolated solution of # ( l , x ) = P(x) = 0 is 
reached by some path originating at t = 0. It follows that this path starts at 
a solution of if (0, x) = Q(x) = 0. 

RANDOM PRODUCT THEOREM, (a) For any choice of the Lij(x), there 
exists an open dense full-measure subset U of C d + 1 such that f or (a, b^) € U, 
the smoothness property holds. 

(b) Assume that the L^ are chosen so that for an open dense subset of 
{bij), V{Q)oo Q V{P)oo {as sets) and V{Q)QO is a smooth submanifold of 
CP n . Then there exists an open dense full-measure subset U of C d + 1 such 
that for {a, bij) € U, the accessibility property holds. 

In practice, the complex numbers a, bij are chosen at random. Once the 
initial points at t = 0 are known, the continuation paths can be followed 
from t = 0 to t = 1 using standard numerical techniques involving differential 
equation solvers [AG]. The beginning points of the paths are the solutions of 
Q{x) = 0, which are easily found because of the product structure of Q. 

The following example illustrates a homotopy in the spirit of [D, CMY, 
GZ, L]. 

EXAMPLE l . The above theorem can be used to find all solutions of 
any polynomial system P{x) = 0 by setting Lij(x) = Xi for i = 1, . . . ,n, 
and j = 1, . . . ,rf{. Then V^QJoo = 0- The hypotheses of the theorem are 
vacuously satisfied. The system 

dx 
Qi{*)= n ( * i + M > 

i= i 

dn 
Qn{x)= n ( Z n + M 

i= i 
has d = d\"dn solutions, which originate d paths leading to all isolated 
solutions of P{x) = 0. In this example, the amount of computation required 
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to find all solutions is roughly proportional to d. If the system is deficient, 
the paths which do not converge to a solution in C n diverge to infinity, rep
resenting wasted computation. 

EXAMPLE 2. For a typical example of a deficient system, suppose that 
each of the highest-degree monomials of each Pi(x) contains at least one of 
the variables of the distinguished subset { x i , . . . , x m } , where m < n. The 
deficiency of this system is due to the existence of a manifold of solutions 
at infinity of dimension at least n — m — 1. A Chern class formula from 
intersection theory [F] shows that the contribution of this set to the Bézout 
number of the system is at least s, where s is the coefficient of tn~m~1 in the 
Maclaurin series expansion of 

(i+o~m"in(i+^)-
Thus the number of solutions in C n of P(x) = 0 is at most N = d — s, less 
than the total degree. Given a system of this type, define Q(x) by 

ft (X) = ( J2 Ci^lXJ + bil ) I l ( J2 Ci^X3 +bik)i 

where the c%jk and b^ are chosen randomly. Then the theorem shows that this 
homotopy provides paths that reach all isolated solutions of P(x) = 0. One 
can check that Q(x) = 0 has exactly N solutions, and therefore the theorem 
produces N paths. In the process of reproving that there are at most N 
isolated solutions, we get a computer-implementable method for finding the 
solutions. 

For example, let P(x) be the system 

xiianxx + • • • + alnxn) + Lifai, • • • ,xn) + fix = 0, 

a:i(anixi + • • • + annxn) + Ln{xu..., xn) + 0n = 0, 

where Li(x) are arbitrary linear forms, /3» € C. The total degree is d = 2n; 
however, P(x) = 0 has as most n + 1 solutions. The theorem provides n + 1 
paths leading to all solutions of P(x) = 0. For large n, this is the difference 
between a problem which is tractable and one which is not. 

2. Cheater's homotopy. In some cases the structure of P(x) is difficult 
to analyze, and as a result a good choice of the random product in the above 
theorem may be difficult to find, or may not even exist. We give an alternative 
approach for such cases which is especially useful when deficient systems of a 
fixed general form must be solved repetitively with varying coefficients. 

Suppose 
Pi(ci,...,CAf,n;i,...,a:n) = 0, 

Pn(ci, . . . ,cjtf ,zi , . . . ,a:n) = 0 
is a system of polynomial equations, where we consider the C{ as coefficients 
and the X{ as variables. The idea is to use the method of Example 1 to solve 
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the system with random coefficients c* the first time, following all d paths, 
and then for subsequent runs, with various values of c«, to use these (perhaps 
fewer than d) solutions as "seeds" to initialize paths. If the structure of the 
system causes it to be deficient, this method results in fewer paths which need 
to be followed in subsequent runs. The precise formulation is as follows. 

CHEATER'S HOMOTOPY THEOREM. There exists an open dense full-
measure subset U of C M + n such tht for (frf,..., 6*, c j , . . . , c*M) G U, the fol
lowing holds: 

(a) The set X* of solutions x = (x i , . . . , xn) of 

qx(xi,..., xn) = p i ( c î , . . . , c ^ , x i , . . . , xn) + &Î = 0, 

qn{x\,...,xn) = Pn(cî, . . . , c*M, xi,..., xn) + 6* = 0 
consists of a finite number of points {at most d). 

(b) The smoothness and accessibility properties hold for the homotopy 

H{x,t) = P{{l-t)cl^tc1,...,{l-t)clI + tcM,xu...1xn) + {l-t)b\ 

where b* = (6J,... ,&*). It follows that every solution of P{x) = 0 is reached 
by a path beginning at a point of X*. 

NOTE. The theorem requires the c* to be complex numbers, even if the 
specific coefficients ct in the problem to be solved are real. 

EXAMPLE 3. A useful application of this theorem is to the robot arm 
equations of [MT]. This highly deficient system consists of eight fairly com
plicated quadratic polynomials in eight unknowns. Although the total degree 
is 28 = 256, the system has at most 32 solutions. In fact, the set X* of the 
theorem consists of 32 points. For each new set of coefficients for which the 
system needs to be solved (corresponding, for example, to a movement of the 
hand from one point to another), only 32 new paths need to be followed to 
find all solutions. 

3. Methods of proof. Part (a) of the Random Product Theorem is a 
matter of the implicit function theorem. It suffices to verify that the rank of 
the Jacobian dH/dx is equal to n at each finite solution (x,£). For t = 0, 
one uses Bertini's theorem successively on <ji,..., qn. The base locus lies at 
infinity because of the structure of Q. For general t, the existence of resultant 
polynomials guarantees the rank is n for vectors (6^) chosen from an open 
dense full-measure subset of Cd. The proof of the smoothness property for 
the Cheater's Homotopy Theroem is similar. 

Now that the solution paths are smooth one-manifolds, it suffices to show 
that the solution paths emanating from each solution of P{x) = 0 (at t = 1) 
stay finite for t € [0,1) and reach a (finite) solution of Q{x) = 0 (at t = 0). 
Let ( / i , . . . , fk) denote the ideal generated by the homogeneous polynomials 
/ i , . . . , fk and let ( / i , . . . , fk)m denote the degree m part. Let h denote the 
homogenization (by xo) of the polynomial h. From the hypotheses of our theo
rems, one shows that for a generic choice of constants, dimc(^i, • • •, hn, Xçf)m 

is constant for t € [0,1), for sufficiently large # , m. Then the theorems follow 
from this key lemma: 
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LEMMA. Let H : C n x U —• C n , where U is an open subset of R, H is 
continuous in t, and H(x,t) is a polynomial map for each t. Suppose there 
are integers K <m such that dime (hi,..., hn, Xo)m is independent oftEU 
and k € {K,K + 1}. Then no path of solutions of H(x,t) = 0 parametrized 
by t tends to infinity as t -+ to €U. 
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