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In this important book, Gromov studies very general classes of partial 
differential equations and inequalities, many of which arise from problems in 
differential geometry. Using a variety of surprising and intricate techniques, 
he shows that in many cases these partial differential relations satisfy the "/i-
principle", i.e., they admit rich families of solutions whenever the appropriate 
topological obstructions vanish. 

Most of the ideas presented here have their origins in a series of papers 
which Gromov wrote in Russian in the later 60s and early 70s, some alone and 
some in collaboration with Eliashberg and Rochlin. Thanks to the excellent 
lecture notes of Haefliger [H] and Poenaru [P], the earliest part of this work is 
reasonably well-known. However, this is just the tip of the iceberg: the later 
papers contain many more, totally original ideas. Unfortunately, these papers 
were sketchily written, and contained various references to other papers which 
never appeared. Gromov has devoted a great deal of effort over the past few 
years to working out these ideas. The end result is this magnificent book. 

The core of the book is a series of abstract and powerful theorems. These 
include a sharp version of the Nash-Moser implicit function theorem which 
is specific to partial differential operators, as well as much more geometric 
results such as the main flexibility theorem and the theorems about convex 
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integration. These serve as the basis for very interesting and far-reaching dis
cussions of a wealth of applications and open questions. The book is also full 
of exercises for the reader, some with hints and/or references, which Gromov 
uses to suggest connections, new approaches and generalizations of his results. 
Thus this book not only contains a full and detailed description of a whole 
new theory, but also gives the reader a great deal of insight into the many 
new questions which it opens up. 

To begin, I shall try to give you some idea of the scope of the applications. 
The foundational example is the celebrated immersion theorem of Smale-
Hirsch (1959), which goes as follows. 

THEOREM 1. Let V and W be manifolds, and suppose that either dim V < 
dim W, or V is open. Then, a smooth map ƒ :V -+W can be homotoped into 
a smooth immersion if and only if it can be covered by a continuous bundle 
map <p : TV —• TW, which is injective on each fiber of TV. 

Here, as always, we assume that the manifolds are connected and with
out boundary, so that "open" is equivalent to "noncompact". Note that the 
force of this theorem lies in the "if" statement: the "only if" statement fol
lows easily from the fact that the space of fiberwise injective bundle maps 
TV —• TW fibers over the space of maps V —• W. As an example, let V be 
an open, parallelizable n-dimensional manifold, and consider the trivial map 
ƒ : V —• pt € Rn. The parallelism defines a map TV -+ Rn which is a linear 
isomorphism on each fiber. It therefore follows that every such V immerses 
into Rn. 

This book studies a vast range of similar questions. For example: 
When can a smooth map f:V -+W be homotoped into a submersion, or to 

a map which preserves some Riemannian metric, or which is transverse to a 
foliation? 

When can a nondegenerate 2-form /3 onV be homotoped through a family 
of nondegenerate forms into a closed nondegenerate form u? (Recall that a 
2-form P on a 2n-dimensional manifold V is said to be nondegenerate if the n-
fold wedge product /?A • • • A/3 never vanishes, and that a closed nondegenerate 
form is also called a symplectic form.) 

The emphasis here is on general rather than particular cases, and the meth
ods presented work in situations where solutions are abundant—in fact, as in 
Theorems 2 and 4 below, they may be dense in the relevant function space. 

Here are some sample results. The first is an improvement of Nash's iso
metric immersion theorem, which clearly was another important influence on 
Gromov's work. 

THEOREM 2. Let (V,g) and (W,h) be Riemannian C°°-manifolds of di
mensions n and q respectively, and let fo'.V —• W be a strictly short map 
(i.e., fo decreases all distances by a factor strictly less than 1). If q >(n + 2)-
(n + 3)/2, then fo admits a fine C°-approximation by isometric C°°-immer
sions f :{V,g) -+ (W,h). 

THEOREM 3. IfV is open, every nondegenerate 2-form /? can be homo
toped to a nondegenerate closed form u) through nondegenerate forms. More
over, one can specify the cohomology class of u in advance. 
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THEOREM 4. Let (V,u) and (W, Q) be symplectic manifolds with dim V < 
dimW + 4 , and suppose that foV —• W is a C°°-embedding such that /Q(Ü) 
«5 cohomologous to UJ. Then, there is a C°-small isotopy of f o to an embedding 
which pulls Q back to w, if and only if f may be covered by a family offiberwise 
injective bundle maps <pt : TV —• TW such that <po = dfo and <pî{tï) = u. 

The book contains a host of similar theorems about Lagrangian and contact 
embeddings, maps with prescribed singularities (e.g., foldings), holomorphic 
functions and immersions, isometric C1 -embeddings of Riemannian manifolds 
(which behave quite differently from C°°-embeddings), and so on, as well as 
theorems about certain general classes of differential equations and inequal
ities. They are all instances of the "^-principle" which I will describe later. 
For now, notice these characteristic points. In Theorem 4, as in Theorem 1, 
the condition on the pair ( ƒ, df) is purely topological: it just concerns the 
homotopy class of df considered as an element of the space of continuous 
fiberwise injective bundle maps over ƒ. The other conditions which appear 
are dimensional: one always needs a little extra room to play with in order to 
make the constructions work. (In the present context an open n-dimensional 
manifold usually can be reckoned to have an effective dimension of n — 1, since 
it deformation retracts onto a neighborhood of its (n — l)-skeleton. Of course, 
the solutions one obtains by exploiting this observation are usually very wild 
near oo; in particular, they are never in any sense of the word proper.) 

In many cases, the conditions on dimension that Gromov gives are the best 
possible, and there are obstructions to a solution in the critical dimension 
when the given conditions just fail. These obstructions are often rather poorly 
understood. On the other hand, the solutions which do exist in the critical 
dimension may carry considerable geometric significance. Consider, for exam
ple, the situation with symplectic embeddings (cf. Theorem 4 above). Since 
symplectic manifolds always have even dimension, the critical codimension is 
2. So far, there are no known methods for constructing compact symplec
tic submanifolds of codimension 2. On the other hand, Gromov has recently 
shown (see [Gl and G2]) that if such a submanifold exists, one can sometimes 
use it to deduce far-reaching consequences for the symplectic structure of the 
whole manifold. Contrast this with the situation for symplectically immersed 
submanifolds of codimension 2. These satisfy the /i-principle. Therefore there 
are lots of them, and they do not have any special geometric meaning. The 
book contains interesting discussions of many other phenomena which occur 
in the critical case. 

The great power of Gromov's methods derives in large part from their 
abstraction. He formulates a whole new and elegant language in which to 
express his ideas, with key concepts such as differential relation, h-principle, 
microflexibility and flexibility of sheaves. I shall now define these terms and 
try to describe some of their significance. 

Let p: X —• V be a smooth fibration, and let X^ be the space of r-jets of 
smooth sections of p. A section <p of the bundle X^ —• V is called holonomic 
if it is the r-jet of a section of p. A differential relation Z of order r imposed 
on sections of p is a subset Z C X^. A section ƒ of p is a solution of Z if 
the r-jet of ƒ takes values in Z. 
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EXAMPLE. In the case of immersions V -> W, let p:X = V x W - • V be 
the obvious projection. A section of p is then equivalent to a map f:V —>W. 
The 1-jet of ƒ at the point x G V is the pair (f(x),dfx), where dfx:TxV —• 
7/(3) W. Thus A^1) can be identified with the space of triples (x,y,a) where 
(x,y)eV xW andae Hom(TxV,TyW). A section of the bundle X& -> F 
consists of a map # : V —• W together with a lifting £> of g to a bundle map 
TV —• TW. It is holonomic if and only if <p = dg. We define the immersion 
relation IM to be the subset consisting of all (x, y, a) such that a is injective. 
It is then clear that the solutions of IM are just the immersions of V in W. 

As Gromov points out, one can divide the problem of solving R into two 
parts. One can first try to construct a continuous section of R —• V, and then 
one can try to pass from this arbitrary section to a holonomic one. The first 
problem is purely topological, and is in theory well-understood. Therefore, 
this book concerns itself with the second, which is much more problematic. 
The most optimistic expectation is expressed in the following. 

HOMOTOPY PRINCIPLE. We say that R satisfies the h-principle if every 
continuous section of R —• V is homotopic through a family of continuous 
sections of R —» V to a holonomic section of R —*V. (There are other versions 
of the /i-principle—relative, or with parameters—but here I'll concentrate on 
its simplest form.) 

EXAMPLE. Clearly, the immersion theorem (Theorem 1 above) may be 
expressed in this language by saying that the immersion relation IM satis
fies the h-principle provided that dimV < dimW or V is open. The other 
theorems may be also be expressed in a similar way. 

One might imagine that very few relations satisfy the h-principle. One 
of the interesting things about this book is that it shows that a surprising 
number of geometrically significant relations do satisfy the h-principle, and 
that those which don't usually don't for some rather good reason. 

In order to establish the h-principle for R it is often useful to consider the 
"continuous" sheaf $ of solutions of R. This is the sheaf over V whose space, 
$([/), of sections over an open U C V is the space of all holonomic sections 
f:U —> R, with the C*-topology for some appropriate k. If C is compact, one 
defines $(C) to be the direct limit of the $(£/) over all open neighborhoods 
U of C. This does not have a suitable topology, but it may be given a natural 
"quasitopology." In particular, a map <p from a polyhedron P to $(C) is 
called "continuous" if and only if there is a neighborhood U of C such that (p 
is the restriction of some map P —• $(£/), which is continuous in the ordinary 
sense. 

The central concept which Gromov uses is that of flexibility. A "continu
ous" sheaf $ is said to be flexible if and only if, for each compact pair C' C C 
in V, the restriction map $(C) —» $(C") is a fibration. Here, by fibration we 
mean Serre fibration, i.e., for any polyhedron P and commutative diagram 

P x { 0 } —£-> *(C) 

i i 
Px[0, l ] — * - *(C), 
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the lifting p of ip can be extended over Px [0,1] in such a way that the diagram 
still commutes. (Note that all maps are assumed to be "continuous" in the 
sense described above.) It is not too hard to show that, in many interesting 
cases (e.g., if the subset R is open), the relation R satisfies the ft-principle 
whenever the corresponding sheaf $ is flexible. But how can one show that a 
sheaf is flexible? Gromov divides this problem into two parts by introducing 
the notions of microflexibility and microfibration. A microfibration is defined 
in the same way as a fibration, except that one demands only that the lift <p 
can be extended over P x [0,6:], for some e > 0 which may depend on P , <p 
and ifr as well as the pair (C, C"). One then calls a sheaf $ microflexible if all 
its restriction maps $(C) —• $(C") are microfibrations. For example, one can 
easily see that the sheaf corresponding to any open relation R is microflexible. 

The main theorem which deduces flexibility from microflexibility is the 
following 

FLEXIBILITY THEOREM. Let $ be a micro flexible sheaf over V and let 
Vo be a submanifold of V which is sharply movable by diffeomorphisms of V 
which lift to $ . Then the sheaf $o = $|Vo *a flexible. 

The definition of "sharply movable" is too technical to give here. However, 
any submanifold of positive codimension is sharply movable by the group 
Diff (V) of all diffeomorphisms of V", and the same is true in the symplectic or 
contact categories. Thus, if R is any open relation over V which is invariant 
under the natural action of Diff(V), and if the submanifold Vo has positive 
codimension in V, then the restriction to Vo of the sheaf corresponding to R 
is flexible. Applying this to the immersion relation, one proves the immersion 
theorem for any manifold Vo whose dimension is less than that of W. 

This proof also works for symplectic and contact immersions, except that 
one needs an extra argument to show that the relevant sheaves are microflexi-
ble (for the relations are no longer open). In these two cases, one can establish 
microflexibility by using an appropriate version of Moser's stability theorem. 
(This says that a small perturbation of a contact structure, or of a symplectic 
form within its cohomology class, is diffeomorphic to the original one.) How
ever, for more general sheaves, for example the sheaf of Riemannian isometric 
immersions, such a simple approach no longer suffices. 

Gromov's deepest result in this connection concerns sheaves which may be 
defined as the solution sheaf $p of some partial differential operator P. (All 
the sheaves mentioned in the previous paragraph have this form.) Here D is an 
operator which goes from the space X of Cr-sections of some fibration X —• V 
to the space Q of C8 -sections of some vector bundle G —• V, and the sheaf 
$p is defined by setting $p(U) equal to the set of solutions of Vf = 0 over 
U C V. Gromov establishes a version of the Nash-Moser implicit function 
theorem which holds for those V which are "infinitesimally invertible". It 
follows readily that $p is microflexible for these D. 

The definition of infinitesimal invertibility is a bit too long to give here. 
Essentially, it says that, for all ƒ in the space X of sections of the fibra
tion X —• V, the linearization Lƒ :TfX —> Q of V at ƒ has a right inverse 
Mf and that these inverses fit together to form a "global" right inverse 
<W( ƒ> g) = Mf(g): X x Q —• T(X) which is itself a differential operator. (Here 
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I have omitted various details which specify degrees of differentiability.) The 
condition is natural in that it does not involve auxiliary norms, and it is of
ten satisfied. Gromov shows, for instance, that a "generic" underdetermined 
nonlinear partial differential operator is infinitesimally invertible. The main 
application of this implicit function theorem is to the isometric immersion 
problem (cf. Theorem 2 above). But, as usual, Gromov gives many other 
applications—for example, to representations of groups of diffeomorphisms. 

The book actually contains two other proofs of the Smale-Hirsch immer
sion theorem, one by removal of singularities and one by convex integration. 
These methods of establishing the ft-principle for a relation R first reduce 
R to an auxiliary elementary relation by standard methods of soft analysis 
like partitions of unity or induction over strata, and then use some geomet
ric construction to solve the elementary problem. Both these methods are 
interesting: removal of singularities because of its simplicity, and convex in
tegration because of its power. The latter method allows one, for example, 
to construct divergence-free vector fields on closed manifolds; to construct 
embeddings with given properties as in Theorem 4 above; and to establish 
the ^-principle for isometric C1 -immersions in the Riemannian category. In 
fact, it applies to a wide variety of relations R C X^r\ in particular to open 
relations whose complements X^ — R have, in some sense, codimension > 2 
(see below). The advantage of this method is that one does not need the Flex
ibility Theorem. Therefore, one does not have to lose a dimension by passing 
from V to Vb, as happened in the proof of the immersion theorem sketched 
above. 

The essence of the method of convex integration is contained in the follow
ing statement: 

LEMMA. If the convex hull of some path-connected subset AQ C R9 con-
tains a small neighborhood of the origin, then there exists a map ƒ : S1 —• Kq 

whose derivative sends S1 into AQ. 

SKETCH OF PROOF. One constructs ƒ as the integral of some continuous 
map <p: [0,1] —• AQ. Thus we think of S1 as [0,1] with endpoints identified, 
and put 

ƒ(*)= f (p(s)ds fori €[0,1]. 
Jo 

In order for ƒ to be well-defined we need the integral of <p over [0,1] to be 
zero. Since 0 is in the convex hull of Ao, there is clearly a step function ip 
with the required properties. One can adjust <p to be continuous because A0 

is path-connected and 0 is in the interior of the convex hull of Ao. 
The above lemma is equivalent to the /i-principle for maps f: S1 —• R9 

which satisfy the relation f'{i) G AQ for all t. By doing slightly more work, one 
can establish the /i-principle for all first-order relations R over a 1-dimensional 
manifold V which are ample. Here, this condition means that for each fiber 
F of the map X^ -> X, the convex hull of F n R is the whole of F. (This 
makes sense because the fibers F have an affine structure. Note also that this 
condition is satisfied whenever F—FC\R is an affine subspace of codimension > 
2.) A very clever idea, that of "piecewise principal paths", allows one to extend 
this to manifolds V of arbitrary dimension and to ample relations R c X^ 
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for arbitrary r. It is worth remarking here that Gromov's original paper on 
this subject [G3] only gave full details of the proof in the 1-dimensional case, 
leaving a large part of the proof for arbitrary n up to reader's imagination. 
This generalization looked plausible, but it wasn't at all clear how one might 
avoid a horribly messy argument. Gromov has now expressed his ideas much 
more fully, and has completed the proof in a very elegant, if abstract, way. 

To end with, here are some comments on the book as a whole. It has been 
carefully written. The main theorems are clearly stated and their proofs, in
sofar as I have studied them, are accurate and quite detailed. The book is 
also essentially self-contained, so that it should be accessible to anyone who 
has a knowledge of the basics of differential topology and geometry. But one 
also needs a good deal of persistence, since it is easy to be overwhelmed by 
the wealth of new ideas and the many, very varied examples which accompany 
each theorem. And so one must make a considerable initial effort to under
stand the basic ideas and language and to learn one's way around. However, 
it's well worth it. The book is a wonderful treasure house of ideas. 

REFERENCES 

[Gl] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent Math. 82 
(1985), 307-347. 

[G2] , Soft and hard symplectic geometry, Talk at the Internat. Congr. Math., Berke
ley, 1986. 

[G3] , Convex integration of differential relations, Izv. Akad. Nauk SSSR 35 (1973), 
329-343. 

[H] A. Haefliger, Lectures on the Theorem of Gromov, Proc. Liverpool Sing. Symp. II 
(Wall, éd.), Lecture Notes in Math., vol. 209, Springer-Verlag, Berlin and New York, 1970, 
pp. 128-141. 

[P] V. Poenaru, Homotopy theory and differential singularities, Manifolds—Amsterdam, 
Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1970, pp. 106-
133. 

DUSA MCDUFF 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 18, Number 2, April 1988 
©1988 American Mathematical Society 
0273-0979/88 $1.00 + $.25 per page 
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This translation (not always felicitous) from the original German version 
of 1982 is essentially a reprise of [IT], which appeared first in 1974. That 
book showed, efficiently and attractively, how nonlinear functional analysis in 
conjunction with the convexity methods of Fenchel, Moreau, and Rockafellar 
could supply a unified treatment for problems of variational calculus and op
timal control. Unlike its predecessor (whose 450-page English translation is 
unfortunately out of print), this brief monograph is not self-contained, and 


