
254 BOOK REVIEWS 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 18, Number 2, April 1988 
©1988 American Mathematical Society 
0273-0979/88 $1.00 + $.25 per page 

Asymptotic theory of statistical inference, by B. L. S. Prakasa Rao. John Wiley 
and Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1987, xiv 
+ 438 pp., $49.95. ISBN 0-471-84335-0 

Statistics, generally speaking, addresses the problem of how to deter
mine from data knowledge of the underlying mechanism, presumed ran
dom, which produces that data. Usually the mechanism is idealized as 
a probability law which is assumed to belong to a collection of possible 
laws. If we have abundant data, we expect that we can determine fairly 
accurately the unknown law, or some aspect of it, say the mean, //, in 
which we are interested. The asymptotic theory of statistical inference 
is the study of how well we may succeed in this pursuit, in quantitative 
terms. Any function of the data, when the amount of data is n, is called a 
"statistic" or estimator fi{n) of, e.g., the mean /i. The sequence {p>{nj} is 
said to be consistent for \i if p,(n) converges to /i as n goes to infinity. The 
sequence is said to be asymptotically normal (regrettably, language 
is abused this way) if fi(n) — /i can be normalized so that the law of the re
sulting sequence converges to a normal distribution. Proofs that particu
lar estimators have these and other nice properties in various versions and 
settings comprise much of the work of classical and modern asymptotic 
statistics. 

In purely mathematical terms, the subject is about convergence of se
quences of functions or measures in various senses; in particular its tools are 
drawn from that part of real analysis and measure theory called probability 
theory. 

Until rather recently, some would say "classically", a large portion of prob
ability theory dealt with operations on sequences of independent random 
variables, and statistical models assumed that data consisted of sequences 
of independent observations. As probability theory began to focus on other 
processes—Markov processes in the 50s and 60s, and stationary time series 
in the 60s and 70s, mathematical statistics began to deal with models where 
observations were assumed to follow these patterns. 

The last ten or fifteen years have produced a strong thrust of activity in sev
eral areas associated with stochastic processes: stochastic integrals, stochas
tic analysis, stochastic differential equations, weak and strong convergence of 
stochastic processes, etc. A class of processes receiving a lot of attention is 
the very broad class called semimartingales. During the same time period 
there has been a burst of activity, partly in response to computing power and 
convenience, in techniques of data analysis, statistical software packages, and 
adaptive statistical procedures. The subject of asymptotic statistics, buoyed 
up, perhaps, by the prosperity of its neighbors, has taken off energetically in 
a number of fresh directions. 

In such a situation it is a daring step to write a book whose stated aim is 
to bring up to date the interface between probability theory and asymptotic 
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statistics. It is indeed to throw large stones into a torrent with the aim of 
providing some kind of bridge. 

Prakasa Rao's first and longest chapter collects a variety of probability 
topics, each introduced with several lines of orientation. A number of points 
receive special emphasis. One is recent work of Sheu and Yao on a moment 
inequality for embedding times. Another is the extensive development in the 
related areas of absolute continuity and contiguity of measures. The exposi
tion extends from Kakutani's well-known result to recent work of Liptser and 
Shiryayev and others on contiguity of stochastic process measures. The topics 
in this chapter are indeed primarily concerned with stochastic processes even 
though the statistical content of the book is, as stated in the preface, mostly 
about independent data as opposed to more general stochastic process data. 
It is implicit here that the potential for use of these topics in statistics is far 
ahead of their exploitation. Particularly on this account, it would have been 
convenient to have some forward indexing in the form of additional notes in 
the "Remarks" which appear at the end of each section, telling us where in 
this book or elsewhere statistical application or significance of the probability 
results may be found. 

The remaining chapters are about asymptotic statistics, and here Prakasa 
Rao has done a large job in assembling and selecting pieces of work from an 
enormous literature spanning the fifteen-year period beginning about 1971. 
As a guideline for emphasis he has used insights gained through his own re
search on several topics. As a pattern of exposition for each topic, he has 
selected a particular author or authors whose writing lends itself to pre
sentation in book form, whose methods are attractive and innovative and 
whose work is important for that topic, and presented that person's work as 
a kind of feature article. In this way he has managed to cover an impres
sive array of topics without getting bogged down with different approaches 
and interplays. The expense is that there is little integration or amalga
mation of the work presented or of the literature. We have, for instance, 
Strasser on global and local asymptotic bounds for risk, Sweeting on max
imum likelihood estimation for processes, Deshayes and Picard on a partic
ular change-point problem, Khmaladze on goodness-of-fit and so on. Each 
of these works represents a large development. The collection is extensive 
and provides a useful introduction to many topics and access to their lit
erature. Separate reference lists at the end of each chapter and large au
thor and subject indices make this a source-book for orientation and 
reference. 

There are occasional signs that the author's own review of the literature 
may not be very thoroughgoing. For example, following Moore [2] he points 
out a difficulty about chi-square tests where bins are based on an estimated 
parameter. But this problem has been resolved by Dzhaparidze and Nikulin 
[1], and recent literature in this direction is not explored. 

Even a cursory study of the book will yield an impression of the magnitude 
of the task it attempts and also of areas where research effort is especially 
invited. It is evident, for instance, that the exploitation of results about rate 
of convergence and of "martingale" methods for proving weak convergence 
and for constructing statistics has only just begun. 



256 BOOK REVIEWS 

REFERENCES 

1. K. O. Dzhaparidze and M. S. Nikulin, On a modification of the standard statistics of 
Pearson, Theory Probab. Appl. 19 (1974), 851-853. 

2. D. S. Moore, A chi-squared statistic with random cell boundaries, Ann. Math. Statist. 
42 (1971), 147-156. 

PRISCILLA E. GREENWOOD 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 18, Number 2, April 1988 
©1988 American Mathematical Society 
0273-0979/88 $1.00 + $.25 per page 

Invariant manifolds, entropy and billiards; smooth maps with singularities, 
by Anatole Katok and Jean-Marie Strelcyn, with the collaboration of F. 
Ledrappier and F. Przytycki. Lecture Notes in Mathematics, vol. 1222, 
Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 
1986, viii + 283 pp., $23.60. ISBN 0-387-17190-8 

Many dynamical systems arising in physics, meteorology, chemistry, biol
ogy, engineering and other fields exhibit chaotic behavior. There is no precise 
definition of "chaos" ; however, in simple terms, chaotic behavior means that 
a typical orbit seems to wander aimlessly in the phase space with no iden
tifiable pattern and its future is unpredictable although the system itself is 
deterministic in nature. The only known cause of chaos is hyperbolicity. Sup
pose we begin moving along a hyperbolic orbit with the speed prescribed by 
the system and observing the relative motion of nearby orbits that start on 
a codimension 1 transversal to our orbit. Then in an appropriate coordinate 
system the relative motion up to first-order terms will be the same as in a 
neighborhood of a saddle point x = Arc, y = My. The eigenvalues of A have 
strictly negative real parts; the eigenvalues of M have strictly positive real 
parts. These real parts are called Lyapunov characteristic exponents (LCEs) 
and give us the exponential rates with which nearby trajectories move to or 
away from our orbit. If all orbits are hyperbolic, all LCEs are uniformly sep
arated from 0 and all estimates are uniform, then we have an Anosov system; 
a good example is the geodesic flow on a compact surface of curvature —1. 
D. Anosov and Ya. Sinai studied such systems about 20 years ago. They 
constructed invariant families (or foliations) of stable and unstable manifolds 
and used them to prove ergodicity (i.e., chaos) for Anosov systems preserv
ing an absolutely continuous measure. In the mid-70s Ya. Pesin generalized 
the whole theory for smooth nonuniformly hyperbolic dynamical systems, i.e., 
systems for which LCEs are not bounded away from 0 and some may actu
ally equal 0. He followed a similar path by constructing and using the stable 
and unstable manifolds and proved that the measure-theoretic entropy equals 
J2j ƒ Vj dm, where the //j;'s are positive exponents and m is an absolutely con
tinuous invariant measure. Later D. Ruelle, R. Mane and others simplified 
and generalized some of Pesin's results. 

In their book A. Katok and J. M. Strelcyn generalize the Pesin theory for 
the case of a dynamical system with singularities. An example of such a sys
tem and one of the main motivations for the book is a billiard system, i.e., 


