The number of equations needed to define an algebraic set
HTML articles powered by AMS MathViewer
- by Gennady Lyubeznik PDF
- Bull. Amer. Math. Soc. 19 (1988), 273-276
References
- M. Boratyński, A note on set-theoretic complete intersection ideals, J. Algebra 54 (1978), no. 1, 1–5. MR 511453, DOI 10.1016/0021-8693(78)90017-0
- R. C. Cowsik and M. V. Nori, Affine curves in characteristic $p$ are set theoretic complete intersections, Invent. Math. 45 (1978), no. 2, 111–114. MR 472835, DOI 10.1007/BF01390268
- David Eisenbud and E. Graham Evans Jr., Every algebraic set in $n$-space is the intersection of $n$ hypersurfaces, Invent. Math. 19 (1973), 107–112. MR 327783, DOI 10.1007/BF01418923
- Daniel Ferrand, Courbes gauches et fibrés de rang $2$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 10, Aii, A345–A347 (French, with English summary). MR 379517
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- William Fulton and Serge Lang, Riemann-Roch algebra, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 277, Springer-Verlag, New York, 1985. MR 801033, DOI 10.1007/978-1-4757-1858-4 [Kr] L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grossen, J. Reine Angew. Math. 92 (1882), 1-23.
- N. Mohan Kumar, On two conjectures about polynomial rings, Invent. Math. 46 (1978), no. 3, 225–236. MR 499785, DOI 10.1007/BF01390276
- M. Pavaman Murthy, Complete intersections, Conference on Commutative Algebra–1975 (Queen’s Univ., Kingston, Ont., 1975), Queen’s Papers on Pure and Applied Math., No. 42, Queen’s Univ., Kingston, Ont., 1975, pp. 196–211. MR 0396591
- M. Pavaman Murthy, Zero-cycles, splitting of projective modules and number of generators of a module, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 315–317. MR 940495, DOI 10.1090/S0273-0979-1988-15655-8
- Uwe Storch, Bemerkung zu einem Satz von M. Kneser, Arch. Math. (Basel) 23 (1972), 403–404 (German). MR 321921, DOI 10.1007/BF01304903 [Su] A. Suslin, A cancellation theorem for projective modules over algebras, Soviet Math. Dokl. 18, no. 5 (1977), 1281-1284.
- L. Szpiro, Lectures on equations defining space curves, Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1979. Notes by N. Mohan Kumar. MR 572085, DOI 10.1007/978-3-662-00736-5
Additional Information
- Journal: Bull. Amer. Math. Soc. 19 (1988), 273-276
- MSC (1985): Primary 14C99, 14M10, 14C25; Secondary 13B25, 13C10
- DOI: https://doi.org/10.1090/S0273-0979-1988-15638-8
- MathSciNet review: 940486