## Constrained Poisson algebras and strong homotopy representations

HTML articles powered by AMS MathViewer

- by Jim Stasheff PDF
- Bull. Amer. Math. Soc.
**19**(1988), 287-290

## References

- I. A. Batalin and E. S. Fradkin,
*A generalized canonical formalism and quantization of reducible gauge theories*, Phys. Lett. B**122**(1983), no. 2, 157–164. MR**697056**, DOI 10.1016/0370-2693(83)90784-0 - I. A. Batalin and G. A. Vilkovisky,
*Existence theorem for gauge algebra*, J. Math. Phys.**26**(1985), no. 1, 172–184. MR**776145**, DOI 10.1063/1.526780 - I. A. Batalin and G. A. Vilkovisky,
*Quantization of gauge theories with linearly dependent generators*, Phys. Rev. D (3)**28**(1983), no. 10, 2567–2582. MR**726170**, DOI 10.1103/PhysRevD.28.2567
3. I. A. Batalin and G. S. Vilkovisky, Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. 69B (1977), 309-312.
- A. D. Browning and David McMullan,
*The Batalin, Fradkin, and Vilkovisky formalism for higher-order theories*, J. Math. Phys.**28**(1987), no. 2, 438–444. MR**872025**, DOI 10.1063/1.527679 - Claude Chevalley and Samuel Eilenberg,
*Cohomology theory of Lie groups and Lie algebras*, Trans. Amer. Math. Soc.**63**(1948), 85–124. MR**24908**, DOI 10.1090/S0002-9947-1948-0024908-8 - E. S. Fradkin and G. A. Vilkovisky,
*Quantization of relativistic systems with constraints*, Phys. Lett. B**55**(1975), no. 2, 224–226. MR**411451**, DOI 10.1016/0370-2693(75)90448-7 - V. K. A. M. Gugenheim,
*On a perturbation theory for the homology of the loop-space*, J. Pure Appl. Algebra**25**(1982), no. 2, 197–205. MR**662761**, DOI 10.1016/0022-4049(82)90036-6 - V. K. A. M. Gugenheim and J. Peter May,
*On the theory and applications of differential torsion products*, Memoirs of the American Mathematical Society, No. 142, American Mathematical Society, Providence, R.I., 1974. MR**0394720** - V. K. A. M. Gugenheim and J. D. Stasheff,
*On perturbations and $A_\infty$-structures*, Bull. Soc. Math. Belg. Sér. A**38**(1986), 237–246 (1987). MR**885535** - Marc Henneaux,
*Hamiltonian form of the path integral for theories with a gauge freedom*, Phys. Rep.**126**(1985), no. 1, 1–66. MR**802754**, DOI 10.1016/0370-1573(85)90103-6
11. M. Henneaux and J. Stasheff, BRST formalism for reducible theories (preprint).
- George S. Rinehart,
*Differential forms on general commutative algebras*, Trans. Amer. Math. Soc.**108**(1963), 195–222. MR**154906**, DOI 10.1090/S0002-9947-1963-0154906-3 - Tadeusz Józefiak,
*Tate resolutions for commutative graded algebras over a local ring*, Fund. Math.**74**(1972), no. 3, 209–231. MR**301003**, DOI 10.4064/fm-74-3-209-231 - John Tate,
*Homology of Noetherian rings and local rings*, Illinois J. Math.**1**(1957), 14–27. MR**86072**

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**19**(1988), 287-290 - MSC (1985): Primary 18G10, 17B55, 81E13; Secondary 58H10, 70H99, 81C99
- DOI: https://doi.org/10.1090/S0273-0979-1988-15645-5
- MathSciNet review: 940489