Constrained Poisson algebras and strong homotopy representations
HTML articles powered by AMS MathViewer
- by Jim Stasheff PDF
- Bull. Amer. Math. Soc. 19 (1988), 287-290
References
- I. A. Batalin and E. S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. B 122 (1983), no. 2, 157–164. MR 697056, DOI 10.1016/0370-2693(83)90784-0
- I. A. Batalin and G. A. Vilkovisky, Existence theorem for gauge algebra, J. Math. Phys. 26 (1985), no. 1, 172–184. MR 776145, DOI 10.1063/1.526780
- I. A. Batalin and G. A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D (3) 28 (1983), no. 10, 2567–2582. MR 726170, DOI 10.1103/PhysRevD.28.2567 3. I. A. Batalin and G. S. Vilkovisky, Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. 69B (1977), 309-312.
- A. D. Browning and David McMullan, The Batalin, Fradkin, and Vilkovisky formalism for higher-order theories, J. Math. Phys. 28 (1987), no. 2, 438–444. MR 872025, DOI 10.1063/1.527679
- Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124. MR 24908, DOI 10.1090/S0002-9947-1948-0024908-8
- E. S. Fradkin and G. A. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett. B 55 (1975), no. 2, 224–226. MR 411451, DOI 10.1016/0370-2693(75)90448-7
- V. K. A. M. Gugenheim, On a perturbation theory for the homology of the loop-space, J. Pure Appl. Algebra 25 (1982), no. 2, 197–205. MR 662761, DOI 10.1016/0022-4049(82)90036-6
- V. K. A. M. Gugenheim and J. Peter May, On the theory and applications of differential torsion products, Memoirs of the American Mathematical Society, No. 142, American Mathematical Society, Providence, R.I., 1974. MR 0394720
- V. K. A. M. Gugenheim and J. D. Stasheff, On perturbations and $A_\infty$-structures, Bull. Soc. Math. Belg. Sér. A 38 (1986), 237–246 (1987). MR 885535
- Marc Henneaux, Hamiltonian form of the path integral for theories with a gauge freedom, Phys. Rep. 126 (1985), no. 1, 1–66. MR 802754, DOI 10.1016/0370-1573(85)90103-6 11. M. Henneaux and J. Stasheff, BRST formalism for reducible theories (preprint).
- George S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195–222. MR 154906, DOI 10.1090/S0002-9947-1963-0154906-3
- Tadeusz Józefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math. 74 (1972), no. 3, 209–231. MR 301003, DOI 10.4064/fm-74-3-209-231
- John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27. MR 86072
Additional Information
- Journal: Bull. Amer. Math. Soc. 19 (1988), 287-290
- MSC (1985): Primary 18G10, 17B55, 81E13; Secondary 58H10, 70H99, 81C99
- DOI: https://doi.org/10.1090/S0273-0979-1988-15645-5
- MathSciNet review: 940489