Let X denote a finite-dimensional vector space with a fixed positive definite inner product, and let $\mathcal{S}(X)$ denote the Schwartz space on X. We let $\mathcal{M}(X)$ denote the space of continuous endomorphisms of $\mathcal{S}(X)$ that commute with the action of X on $\mathcal{S}(X)$. The elements of $\mathcal{M}(X)$ are given by convolution by tempered distributions; i.e., for $E \in \mathcal{M}(X)$ there is a $D_E \in \mathcal{S}^*(X)$ such that $Ef(x) = \langle D_E, l_x f \rangle := D_E \ast f(x)$, where $D_E(x) = f(-x)$ and $l_x f(y) = f(y - x)$. Conversely, if $D \in \mathcal{S}^*(X)$, then one can easily see that $E_D : f \rightarrow D \ast f$ is a mapping of $\mathcal{S}(X)$ into the smooth functions on X that commutes with translation. Schwartz [S] shows that $E_D \in \mathcal{M}(X)$ if and only if D, the Fourier transform of D, is given by a smooth function on X^* which has polynomial bounds on all derivatives. In this note we announce analogues of these results for arbitrary nilpotent Lie groups. Complete proofs will appear elsewhere.

Let N denote a connected, simply connected nilpotent Lie group, with Lie algebra n. The exponential mapping, exp : $n \rightarrow N$, is a diffeomorphism, and in terms of the corresponding coordinates left and right translation on N are polynomial mappings. Thus, if $\mathcal{S}(N)$ denotes the image under composition with exp of $\mathcal{S}(n)$, the right and left action of N on $\mathcal{S}(N)$ are continuous endomorphisms, where $\mathcal{S}(N)$ is topologized so that composition with exp is an isomorphism from $\mathcal{S}(n)$ to $\mathcal{S}(N)$. We denote by $\mathcal{S}^*(N)$ the dual of $\mathcal{S}^*(n)$. For $\mathcal{S}^*(n)$ to $\mathcal{S}^*(N)$, the space of tempered distributions on N.

For $f \in \mathcal{S}(N)$, the Fourier transform of f, \hat{f}, is defined on n^*, the dual of n, by

$$\hat{f}(\xi) = \int_n f(\exp X) e^{-2\pi i \langle \xi, X \rangle} dX.$$

One has that $f \rightarrow \hat{f}$ is an isomorphism from $\mathcal{S}(N)$ onto $\mathcal{S}(n^*)$. For $D \in \mathcal{S}^*(N)$, \hat{D} is defined on $\mathcal{S}(n^*)$ by $\langle \hat{D}, f \rangle = \langle D, \hat{f} \circ \log \rangle$, where log denotes the inverse of exp.

Let Ad^* denote the coadjoint representation of N on n^*. A tempered distribution D on n^* is said to be Ad^*-invariant if $\langle D, f \circ \text{Ad}^* x \rangle = \langle D, f \rangle$ for all $x \in N$ and $f \in \mathcal{S}(n^*)$. A tempered distribution D on N is said to be bi-invariant if $\langle D, \tau_x f \rangle = \langle D, l_x f \rangle$ for all $f \in \mathcal{S}(N)$, where $\tau_x f(y) = f(yx)$ and $l_x f(y) = f(x^{-1}y)$ for all $x, y \in N$. A straightforward computation shows that an element $D \in \mathcal{S}(N)$ is bi-invariant if and only if \hat{D} is Ad^*-invariant.

Received by the editors January 22, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 22E30, 43A55.

This research supported in part by a grant from the National Science Foundation.

©1988 American Mathematical Society

0273-0979/88 $1.00 + $.25 per page

291
Let $\mathcal{M}(N)$ denote the space of continuous endomorphisms on $\mathcal{S}(N)$ that commute with both right and left translations by elements of N. As in the Euclidean case, one has that for each $E \in \mathcal{M}(N)$ there is a $D_E \in \mathcal{S}^*(N)$ such that $E f = D_E \ast f$, where, as before, $D_E \ast f(x) := \langle D_E, L_x f \rangle$. If $D \in \mathcal{S}^*(N)$ we denote by E_D the mapping defined on $\mathcal{S}(N)$ by $E_D f = D \ast f$.

Let $P \mathcal{B}^\infty(N^*)$ denote the space of smooth, Ad*-invariant functions defined on n^* with polynomial bounds on all derivatives. This space is topologized using the seminorms ν_{ij} defined on $P \mathcal{B}^\infty(N^*)$ by

$$\nu_{ij}(\theta) = \sup_{|\alpha| \leq j} \sup_{\xi \in n^*} |\partial^\alpha \theta(\xi)|/(1 + ||\xi||^2)^i,$$

where ∂^α denotes the standard differential operator corresponding to the multi-index α, and some fixed basis of n^*. A sequence $\{E_n\} \subset \mathcal{M}(N)$ converges to 0 if $E_n f \to 0$ in $\mathcal{S}(N)$ for each $f \in \mathcal{S}(N)$.

Theorem A. The mapping $\mathcal{M}(N) \to P \mathcal{B}^\infty(N^*): E \to E_D$ is a homeomorphism and an algebra isomorphism, the products being composition on $\mathcal{M}(N)$ and pointwise multiplication on $P \mathcal{B}^\infty(N^*)$.

For $\xi \in n^*$, let π_ξ denote the irreducible unitary representation of N that corresponds to the Ad*-orbit of ξ by the Kirillov theory. For $\theta \in P \mathcal{B}^\infty(N^*)$, let D_{θ} be the tempered distribution on N with Fourier transform θ.

Theorem B. For $\theta \in P \mathcal{B}^\infty(N^*)$, $f \in \mathcal{S}(N)$, and $\xi \in n^*$,

$$\pi_\xi(D_{\theta} \ast f) = \theta(\xi)\pi_\xi(f).$$

As an application of these results, we consider the question of local solvability. Recall that a left invariant differential operator L on N is said to be locally solvable if there is an open set $U \subset N$ such that $C_c^\infty(U) \subset L(C^\infty(U))$.

Let $o(\xi)$ denote the Ad*-orbit in n^* that contains ξ, and having fixed a norm on n^*, set $|o(\xi)| = \inf\{||\xi'||: \xi' \in o(\xi)\}$. Suppose that N contains a discrete, cocompact subgroup Γ. Then $L^2(\Gamma\backslash N)$ is a direct sum of subspaces \mathcal{H}_ξ such that the restriction to \mathcal{H}_ξ of right translation is a finite multiple of π_ξ. We denote by $(\Gamma\backslash N)^0_0$ the elements of \tilde{N} appearing in this decomposition that are in general position.

Theorem C. Let L be a left invariant differential operator on N. Suppose that for each $\pi_\xi \in (\Gamma\backslash N)^0_0$, $\pi_\xi(L)$ has a bounded right inverse $A_{}\xi$ on \mathcal{H}_ξ, and that the norm of $A_{}\xi$ is bounded by a polynomial in $|o(\xi)|$. Then L is locally solvable.

The proof of Theorem A requires the introduction of somewhat more general spaces. Let \mathcal{H} be a subspace of the center of \mathcal{N}, and let $\lambda \in \mathcal{H}^*$. We define the unitary character χ_λ on $H := \exp(\mathcal{H})$ by $\chi_\lambda(\exp X) = e^{2\pi i \langle \lambda, X \rangle}$, and denote by $\mathcal{S}(N/H, \chi_\lambda)$ the space of all smooth functions f defined on N such that $f(xy) = \chi_\lambda(y)f(x)$ for all $x \in N$, $y \in H$, and such that $f \circ \exp_{|\mathcal{H}} \in \mathcal{S}(\mathcal{H})$, where \mathcal{H} is a complement to \mathcal{H} in \mathcal{N}. The topology of $\mathcal{S}(N/H, \chi_\lambda)$ is defined by requiring that the mapping $f \to f \circ \exp_{|\mathcal{H}}$ be a homeomorphism. Define $P_\lambda: \mathcal{S}(N) \to \mathcal{S}(N/H, \chi_\lambda)$ by

$$P_\lambda f(\exp X) = \int f(\exp(X + Y))\chi_\lambda(-Y) dY.$$
P_λ is an open surjection and thus its adjoint P_λ^* is an isomorphism of $\mathcal{S}^*(N/H,\chi_\lambda)$ into $\mathcal{S}(N)$.

Let \mathcal{A}^\perp be the annihilator of \mathcal{A} in \mathcal{A}^*. For $\lambda \in \mathcal{A}^*$ (identified as a subspace of \mathcal{A}^*), there is a natural Schwartz space on $\mathcal{A}^\perp + \lambda$, $\mathcal{S}(\mathcal{A}^\perp + \lambda)$, given by composing elements of $\mathcal{S}(\mathcal{A}^\perp)$ with translation by $-\lambda$. Considering $\mathcal{S}(N/H,\chi_\lambda)$ and $\mathcal{S}(\mathcal{A}^\perp + \lambda)$ as subspaces of $\mathcal{S}^*(N)$ and $\mathcal{S}^*(\mathcal{A}^*)$ respectively, the Fourier transform is defined on these spaces and one has that $f \to \hat{f}$ is an isomorphism of $\mathcal{S}(N/H,\chi_\lambda)$ onto $\mathcal{S}(\mathcal{A}^\perp + \lambda)$ and of $\mathcal{S}(\mathcal{A}^\perp + \lambda)$ onto $\mathcal{S}(N/H,\chi_{-\lambda}).$ Also one has that for $D \in \mathcal{S}^*(N/H,\chi_{\lambda})$, $(P_\lambda^* D)^\perp = R_\lambda^* D$, where $R_\lambda: \mathcal{S}(\mathcal{A}^*) \to \mathcal{S}(\mathcal{A}^\perp + \lambda)$ is restriction, and \hat{D} is the element in $\mathcal{S}^*(\mathcal{A}^\perp - \lambda)$ defined by $(\hat{D},f) = (D,\hat{f})$. Thus $(P_\lambda^* D)^\perp$ is supported on $\mathcal{A}^\perp + \lambda$ and has no normal derivatives.

For $f \in \mathcal{S}^*(N/H,\chi_\lambda)$ and $D \in \mathcal{S}^*(N/H,\chi_{-\lambda})$, the convolution $D * f$ is defined by setting $D * f(x) = (D, l_x(f))$ for each $x \in N$. Suppose now that $D \in \mathcal{S}^*(N)$ and $f \in \mathcal{S}(N)$. One can use Abelian Fourier analysis to study the mapping defined on x_1, the center of \mathcal{A}, by $Y \to D * f(\exp(X + Y))$. If this mapping is in $\mathcal{S}(x)$, then

$$D * f(\exp X) = \int_{x_1} P_\lambda(D * f)(\exp X) \, d\lambda,$$

for appropriately normalized Lebesgue measure $d\lambda$. Furthermore, $P_\lambda(D * f) = D_\lambda * P_\lambda f$, where D_λ is the element of $\mathcal{S}^*(N/H,\chi_{-\lambda})$ whose Fourier transform, \hat{D}_λ, agrees with the restriction to $\mathcal{A}^\perp + \lambda$ of \hat{D}. Thus, convolution between elements of $\mathcal{S}^*(N)$ and $\mathcal{S}(N)$ decomposes into convolutions between elements of $\mathcal{S}^*(N/H,\chi_{-\lambda})$ and $\mathcal{S}(N/H,\chi_\lambda)$ in such a way that smoothness and growth conditions on \hat{D}, $D \in \mathcal{S}^*(N)$ are inherited by \hat{D}_λ, $D_\lambda \in \mathcal{S}^*(N/H,\chi_{-\lambda})$. One then proceeds by induction on the dimension of N/H. Of course, this requires maintaining considerable control of the various seminorm estimates that appear in the decompositions.

The proof of Theorem B follows along the usual induction argument lines with the Plancherel Theorem being used to reduce the dimension.

For Theorem C, one constructs a θ on \mathcal{A}^* such that both θ and $1/\theta$ are in $PB\mathcal{S}(\mathcal{A}^*)$, and such that $\sum ||A(\xi)||\theta(\xi) < \infty$, the sum being over $(\Gamma\backslash N)_\theta^*$. One then uses the fact that $(D_{1/\theta} * f) * (D_\theta * g) = f * g$ and the Dixmier and Mallivan [DM] factorization to complete the proof.

REMARKS. The fact that $D_\theta \in \mathcal{M}\mathcal{S}(N)$ was proved by R. Howe in [H], and indeed, the ideas presented there are the foundation of this work. Theorem B was proved for the case where θ is a polynomial by A. Kirillov in [K]. In [CG], L. Corwin and F. Greenleaf proved Theorem C with the additional assumption that all the representations in general position were induced from a common, normal subgroup. One-sided Schwartz multipliers have been studied by L. Corwin in [C].
REFERENCES

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY AT ALBANY, STATE UNIVERSITY OF NEW YORK, ALBANY, NEW YORK 12222