ON THE LOCAL SEVERI PROBLEM

ROBERT TREGER

Introduction. We study plane curves with singularities. Let \(P^N \) be the projective space parametrizing plane curves of degree \(n \) \((N = n(n+3)/2)\). Let \(V(n, g) \subset P^N \) be the locus of reduced irreducible plane curves of degree \(n \) and (geometric) genus \(g \), and \(l \subset P^2 \) a fixed line. Following Zariski [7], we consider the subvariety \(Z(n, g) \subset \overline{V}(n, g) \) of curves which contain \(l \) as a component. The purpose of this note is to study \(Z(n, g) \) and prove the following

\[\text{Theorem.} \] Let \(E(n, g) \) be a branch of \(\overline{V}(n, g) \) through a point of \(Z(n, g) \) corresponding to a reduced curve. Then the general members of \(E(n, g) \cap Z(n, g) \) have only nodes as singularities.

It is well known (cf. Severi [5, §11]) that this Theorem implies the following fundamental result of Harris.

\[\text{Corollary (Harris [3]). } V(n, g) \text{ is irreducible.} \]

In the case when \(L \in E(n, g) \cap Z(n, g) \) is a union of \(n \) distinct lines passing through a point, our theorem is a realization of Severi’s attempt to prove that \(L \) can be regenerated to a reducible nodal curve of \(E(n, g) \) [5, §11, p. 344]. The idea of using decreasing induction on \(g \) and equations of curves in the proof was suggested in Zariski [7]. On the other hand, Harris [3] and Ran [4] use the degeneration method in their treatment of plane curves.

Proof of Theorem. We set \(d = (n - 1)(n - 2)/2 - g \) and \(\nu(n, d) = \dim V(n, g) = 3n + g - 1 \) ([5, §11], [6]). Let \(\Sigma_{n,d} \subset P^N \times \text{Sym}^d(P^2) \) be the closure of the locus of irreducible curves of degree \(n \) with \(d \) nodes and no other singularities, and \(\pi_N \) the projection to \(P^N \). Given a pair consisting of a reduced curve \(E \in \overline{V}(n, g) \) and a branch of \(\overline{V}(n, g) \) through the curve, one can define, via \(\pi_N \), an element of \(\text{Sym}^d(P^2) \), called the cycle of assigned singularities of the pair. Our basic tool is the dimension-theoretic characterization of maximal families of nodal curves by Arbarello and Cornalba [1] and Zariski [6] and its generalization by Harris [3, Proposition 2.1].

Let \(C \) be a general member of \(E(n, g) \cap Z(n, g) \). We will prove that \(C \) is nodal and all its unassigned nodes lie on \(l \) for every choice of a branch of \(E(n, g) \) through \(C \).

Lemma. For \(d \leq 3 \), \(\Sigma_{n,d} \) is irreducible and unibranch.

Proof of the Lemma. Let \(\Sigma' \), \(\Sigma'' \subset \Sigma_{n,d} \) be components such that a general member of \(\Sigma' \) has \(d \) nodes in general position. A dimension count

Received by the editors December 16, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 14H10, 14H45.

©1988 American Mathematical Society
0273-0979/88 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
shows that a general member of $\Sigma' \cap \Sigma''$ is a reduced curve with d assigned singular points. Therefore $\Sigma_{n,d} = \Sigma'$. The second assertion follows from the unibranchness of $\text{Sym}^d(\mathbb{P}^2)$.

Step 1. Let $d \leq 3$. We regenerate C to a nodal curve $F = l + F'$ having the same number of irreducible components and the same genus as C. We take a branch of $\mathcal{C}(n, g)$ through C and consider the corresponding cycle of assigned singularities $\sum d_t P_t$. For every t, we choose d_t assigned nodes of F in the vicinity of P_t. The curve F with the $d = \sum d_t$ assigned nodes determines a branch of $\overline{\mathcal{V}(n, g)}$ through C. By the lemma, it coincides with the branch of $\mathcal{C}(n, g)$, chosen above.

Step 2. We assume $d \geq 4$ and the theorem is true for smaller d's. If $C = l + C'$ has no assigned singularities on l (for a branch of $\mathcal{C}(n, g)$), then C' is moving in the family of dimension $\leq \nu(n - 1, d) = \nu(n, d) - n - 1$. Since $Z(n, g)$ is defined by $n + 1$ equations in $\mathcal{C}(n, g)$ [7, p. 470], the inequality is, in fact, equality and C is nodal.

Step 3. We now assume that C has assigned singularities on l. Let $f(X, Y, Z) = \Sigma a_{ijk} X^j Y^k Z^{n-j-k}$ be an equation of a curve of $\mathcal{C}(n, g)$. We have chosen our coordinate system in \mathbb{P}^2 so that $l = \{X = 0\}$ and all the singularities of the curves of $\mathcal{C}(n, g)$ lie in $\mathbb{P}^2 \setminus \{Z = 0\}$. Moreover, the following constructions take place in a neighborhood of a general member D of $\mathcal{C}(n, g) \cap Z(n, g) \cap \{a_{00} = a_{10} = a_{01} = 0\}$. We assume D is a specialization of C, and it has an assigned singularity at $(0:0:1)$. By abuse of notation we denote by $\mathcal{C}(n, g)$ a fixed new branch of $\overline{\mathcal{V}(n, g)}$ through D, contained in the original branch.

Let $\mathcal{A}_g^0 \subset \mathcal{C}(n, g)$ be the subfamily of curves having a node at $(0:0:1)$. It has codimension 2 in $\mathcal{C}(n, g)$ and its general members are irreducible nodal curves with d nodes. For $i \geq 1$, the components of $\mathcal{A}_g^i = \mathcal{A}_g^{i-1} \cap \{a_{0n-i+1} = 0\}$ have codimension $\leq i + 2$ in $\mathcal{C}(n, g)$ and consist of curves having intersection multiplicity at least i with l at $(0:1:0)$. If a general member of \mathcal{A}_g^i does not contain l as a component, then a dimension count shows that it has intersection multiplicity i with l at $(0:1:0)$ and only d singular points which are nodes: we blow up $(0:0:1)$ and i times $(0:1:0)$ in the direction of l, and apply [3, Proposition 2.1].

Step 4. Let E be a general member of $\mathcal{C}(n, g)$ and $Q \in E$ a node distinct from $(0:0:1)$. Moreover, if D has an assigned (with respect to $\mathcal{C}(n, g)$) singular point outside l, then we assume Q tends to this point; the second choice is a node $Q \in E$ which does not tend to $(0:0:1)$. Let $\mathcal{C}(n, g + 1) \subset \overline{\mathcal{V}(n, g + 1)}$ ($\mathcal{C}(n, g) \subset \mathcal{C}(n, g + 1)$) be the branch through D obtained by considering Q as virtually nonexistent. We can define, as above, the subfamilies \mathcal{A}_g^{i+1} of $\mathcal{C}(n, g + 1)$. Let $m + 1$ be the first integer such that a general member of \mathcal{A}_g^{m+1} contains l as a component.

Case 1. The general members of \mathcal{A}_g^{m+1} do not contain l as a component. We get $\dim \mathcal{A}_g^{m+2} = \dim \mathcal{A}_g^{m+1}$. By the induction hypothesis we get that D is nodal.

Case 2. A general member F of \mathcal{A}_g^{m+1} contains l as a component. Then $F = l + F'$ is nodal. A dimension count shows that $D = l + D'$ can have at
most one non-nodal singularity. Moreover, if \(g(F') \neq g(D') \) then \(D \) is nodal. If \(D \) is not nodal and \(g(F') = g(D') \), then the singular points of \(F \) and \(D \) are on \(l \). Hence \(F' \) is smooth and \(D \) has one tacnode. We can assume the node \(Q \) tends to a node \(Q^* \in D \). Let \(\mathcal{H} \subset \Sigma_{n,1} \) be the branch through \((D, Q^*)\). By [2, Exp. XIII, §2],

\[
\mathcal{H} = \mathcal{E}(n, g + 1) \cap \pi_N(\mathcal{H})
\]

is 1-connected. If \(\mathcal{H} = \mathcal{E}(n, g) \), we are done. If \(\mathcal{H} \neq \mathcal{E}(n, g) \), we choose a component \(\mathcal{C} \) of \(\mathcal{H} \) such that a component \(\mathcal{U} \) of \(\mathcal{C} \cap \mathcal{E}(n, g) \) has dimension \(\nu(n, d + 1) \). Let \(G \) be a general member of \(\mathcal{U} \). By the deformation theory, we get \(g(G) \leq g - 1 \). Therefore \(G \) is nodal with \(d + 1 \) nodes, two of which tend to the tacnode. By intersecting \(\mathcal{U} \) with the branches of \(\pi_N(\Sigma_{n,1}) \) corresponding to the unassigned nodes of \(D \), we derive that \(D \) is not a general curve.

REMARKS. A dimension count shows that the number of unassigned singularities of \(C \) is equal to \(m \).

As in the lemma, for \(d \leq n(n + 3)/6 \) and \((n, d) \neq (6, 9)\), the unibranchness of \(\Sigma_{n,d} \) follows from the irreducibility. One can give another proof that \(\Sigma_{n,d} \) is irreducible in that range using the following general result (see a conjecture in [7, p. 479]): Let \(E \) be a general member of an irreducible subfamily \(S \) of \(\mathcal{V}(n, g) \) \((0 \leq g \leq (n - 1)(n - 2)/2) \). If \(\dim S \geq \nu(n, d) - 1 \), then \(E \) is reduced. If \(S \) consists of nonreduced curves and has the maximal dimension, then a general member of \(S \) is a union of an irreducible nodal curve and a general double line.

REFERENCES

DEPARTMENT OF MATHEMATICS, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, CANADA K7L 3N6