Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 1567697
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Gerd Grubb
Title: Functional calculus of pseudo-differential boundary problems
Additional book information: Progress in Mathematics, vol. 65, Birkhäuser, Boston, Basel, Stuttgart, 1986, vi + 511 pp., $49.00. ISBN 0-8176-3349-9.

References [Enhancements On Off] (What's this?)

  • M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
  • [BdM1] Louis Boutet de Monvel, Comportement d'un opérateur pseudo-differentiel sur une variété à bord. I, II J. d'Analyse Math. 71 (1966), 241-253; 255-304.
  • Louis Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), no. 1-2, 11–51. MR 407904, DOI
  • H. O. Cordes, Pseudo-differential operators on a half-line, J. Math. Mech. 18 (1968/69), 893–908. MR 0435935
  • G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, Translations of Mathematical Monographs, vol. 52, American Mathematical Society, Providence, R.I., 1981. Translated from the Russian by S. Smith. MR 623608
  • G. I. Èskin, Boundary value problems and the parametrix for elliptic systems of pseudodifferential equations, Trudy Moskov. Mat. Obšč. 28 (1973), 75–116 (Russian). MR 0365237
  • Stephan Rempel and Bert-Wolfgang Schulze, Parametrices and boundary symbolic calculus for elliptic boundary problems without the transmission property, Math. Nachr. 105 (1982), 45–149. MR 670511, DOI
  • [V-E1] M. I. Vishik and G. I. Eskin, Convolution equations in a bounded domain, Russian Math. Surveys 20 (1965), no. 3, 85-151.
    [V-E2] M. I. Vishik and G. I. Eskin, Normally solvable problems for elliptic systems of convolution equations, Math. USSR-Sb. (1967), 303-330.

Review Information:

Reviewer: Gregory Eskin
Journal: Bull. Amer. Math. Soc. 19 (1988), 349-352