Numerical orbits of chaotic processes represent true orbits
HTML articles powered by AMS MathViewer
- by Stephan M. Hammel, James A. Yorke and Celso Grebogi PDF
- Bull. Amer. Math. Soc. 19 (1988), 465-469
References
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
- Rufus Bowen, $\omega$-limit sets for axiom $\textrm {A}$ diffeomorphisms, J. Differential Equations 18 (1975), no. 2, 333–339. MR 413181, DOI 10.1016/0022-0396(75)90065-0
- Stephen M. Hammel, James A. Yorke, and Celso Grebogi, Do numerical orbits of chaotic dynamical processes represent true orbits?, J. Complexity 3 (1987), no. 2, 136–145. MR 907194, DOI 10.1016/0885-064X(87)90024-0 4. S. M. Hammel, C. K. R. T. Jones, and J. V. Moloney, Global dynamical behaviour of the optical field in a ring cavity, J. Opt. Soc. Amer. B 2 (1985), 552-564.
- Ethan M. Coven, Ittai Kan, and James A. Yorke, Pseudo-orbit shadowing in the family of tent maps, Trans. Amer. Math. Soc. 308 (1988), no. 1, 227–241. MR 946440, DOI 10.1090/S0002-9947-1988-0946440-2
- Helena E. Nusse and James A. Yorke, Is every approximate trajectory of some process near an exact trajectory of a nearby process?, Comm. Math. Phys. 114 (1988), no. 3, 363–379. MR 929137, DOI 10.1007/BF01242136
Additional Information
- Journal: Bull. Amer. Math. Soc. 19 (1988), 465-469
- MSC (1985): Primary 58F13, 58F15; Secondary 65G10, 65G05
- DOI: https://doi.org/10.1090/S0273-0979-1988-15701-1
- MathSciNet review: 938160