Singular Sobolev connections with holonomy
HTML articles powered by AMS MathViewer
- by L. M. Sibner and R. J. Sibner PDF
- Bull. Amer. Math. Soc. 19 (1988), 471-473
References
- M. F. Atiyah, Magnetic monopoles in hyperbolic spaces, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 1–33. MR 893593
- Peter J. Braam, Magnetic monopoles on three-manifolds, J. Differential Geom. 30 (1989), no. 2, 425–464. MR 1010167
- A. Chakrabarti, Spherically and axially symmetric $\textrm {SU}(N)$ instanton chains with monopole limits, Nuclear Phys. B 248 (1984), no. 1, 209–252. MR 776371, DOI 10.1016/0550-3213(84)90594-7
- Andreas Floer, Monopoles on asymptotically Euclidean $3$-manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 1, 125–127. MR 866030, DOI 10.1090/S0273-0979-1987-15485-1
- Peter Forgács, Zalán Horváth, and László Palla, Exact, fractionally charged self-dual solution, Phys. Rev. Lett. 46 (1981), no. 6, 392–394. MR 656458, DOI 10.1103/PhysRevLett.46.392
- Peter Forgács, Zalán Horváth, and László Palla, One can have noninteger topological charge, Z. Phys. C 12 (1982), no. 4, 359–360. MR 658870, DOI 10.1007/BF01557580
- L. M. Sibner, Removable singularities of Yang-Mills fields in $\textbf {R}^{3}$, Compositio Math. 53 (1984), no. 1, 91–104. MR 762308
- P. D. Smith, Removable singularities for the Yang-Mills-Higgs equations in two dimensions, Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990), no. 6, 561–588 (English, with French summary). MR 1079572, DOI 10.1016/S0294-1449(16)30281-5
- L. M. Sibner and R. J. Sibner, Removable singularities of coupled Yang-Mills fields in $\textbf {R}^{3}$, Comm. Math. Phys. 93 (1984), no. 1, 1–17. MR 737461, DOI 10.1007/BF01218636
- Karen K. Uhlenbeck, Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982), no. 1, 31–42. MR 648356, DOI 10.1007/BF01947069
- Karen K. Uhlenbeck, Removable singularities in Yang-Mills fields, Comm. Math. Phys. 83 (1982), no. 1, 11–29. MR 648355, DOI 10.1007/BF01947068
Additional Information
- Journal: Bull. Amer. Math. Soc. 19 (1988), 471-473
- MSC (1985): Primary 35J60, 53C80
- DOI: https://doi.org/10.1090/S0273-0979-1988-15703-5
- MathSciNet review: 956602