Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567712
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Valentin F. Kolchin
Title: Random mappings
Additional book information: Optimization Software, Inc., distributed by Springer-Verlag, New York, 1986, xiv+206 pp., $ 80.00. ISBN 0-387-96154-2.

References [Enhancements On Off] (What's this?)

1.
A. Cayley, A theorem on trees, Quart. J. Pure Appl. Math. 23 (1889), 376-378. [The Collected Mathematical Papers of Arthur Cayley, Vol. XIII, Cambridge Univ. Press, 1897, pp. 26-28.]
  • Paul Erdős and Joel Spencer, Probabilistic methods in combinatorics, Probability and Mathematical Statistics, Vol. 17, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0382007
  • P. Erdős and P. Turán, On some problems of a statistical group-theory. III, Acta Math. Acad. Sci. Hungar. 18 (1967), 309–320. MR 215908, DOI 10.1007/BF02280290
  • B. V. Gnedenko, On a local limit theorem of the theory of probability, Uspehi Matem. Nauk (N. S.) 3 (1948), no. 3(25), 187–194 (Russian). MR 0026275
  • 5.
    S. W. Golomb, Random permutations, Bull. Amer. Math. Soc. 70 (1964), 747.
  • W. Gontcharoff, Sur la distribution des cycles dans les permutations, C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 (1942), 267–269. MR 0007207
  • David G. Kendall, Some problems in the theory of queues, J. Roy. Statist. Soc. Ser. B 13 (1951), 151–173; discussion: 173–185. MR 47944
  • V. F. Kolčin, A certain class of limit theorems for conditional distributions, Litovsk. Mat. Sb. 8 (1968), 53–63 (Russian, with Lithuanian and English summaries). MR 0240856
  • 9.
    V. F. Kolchin, A problem of the allocation of particles in cells and cycles of random permutations, Theor. Probability Appl. 16 (1971), 74-90.
  • V. F. Kolčin, The extinction time of a branching process and the height of a random tree, Mat. Zametki 24 (1978), no. 6, 859–870, 894 (Russian). MR 522419
  • V. F. Kolchin, B. A. Sevast′yanov, and V. P. Chistyakov, Sluchaĭ nye razmeshcheniya, Teoriya Veroyatnosteĭ i Matematicheskaya Statistika. [Probability Theory and Mathematical Statistics], Izdat. “Nauka”, Moscow, 1976 (Russian). MR 0471015
  • Richard Otter, The multiplicative process, Ann. Math. Statistics 20 (1949), 206–224. MR 30716, DOI 10.1214/aoms/1177730031
  • 13.
    Yu. L. Pavlov, The asymptotic distribution of maximum tree size in a random forest, Theor. Probability Appl. 22 (1977), 509-520.
  • Yu. L. Pavlov, Limit distributions of the height of a random forest, Teor. Veroyatnost. i Primenen. 28 (1983), no. 3, 449–457 (Russian, with English summary). MR 716303
  • G. V. Proskurin, The distribution of the number of vertices in the strata of a random mapping, Teor. Verojatnost. i Primenen. 18 (1973), 846–852 (Russian, with English summary). MR 0323608
  • 16.
    H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Arch. Math. u. Phys. 27 (1918), 142-144.
  • A. Rényi and G. Szekeres, On the height of trees, J. Austral. Math. Soc. 7 (1967), 497–507. MR 0219440
  • V. N. Sačkov, Veroyatnostnye metody v kombinatornom analize, “Nauka”, Moscow, 1978 (Russian). MR 522165
  • 19.
    B. A. Sevastyanov and V. P. Chistyakov, Asymptotic normality in the classical ball problem, Theor. Probability Appl. 9 (1964), 198-211.
  • L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc. 121 (1966), 340–357. MR 195117, DOI 10.1090/S0002-9947-1966-0195117-8
  • Lajos Takács, Remarks on random walk problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 2 (1957), 3/4, 175–182 (English, with Russian and Hungarian summaries). MR 102135
  • Lajos Takács, A generalization of the ballot problem and its application in the theory of queues, J. Amer. Statist. Assoc. 57 (1962), 327–337. MR 138139
  • Lajos Takács, Combinatorial methods in the theory of stochastic processes, John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0217858

  • Review Information:

    Reviewer: Lajos Takács
    Journal: Bull. Amer. Math. Soc. 19 (1988), 511-515
    DOI: https://doi.org/10.1090/S0273-0979-1988-15723-0