Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 1567719

Full text of review: PDF This review is available free of charge.

Book Information:

Authors: W. I. Fushchich and A. G. Nikitin

Title: Symmetries of Maxwell's equations

Additional book information: Translated by John R. Schulenberger. Mathematics and its Applications. D. Reidel Publishing Company, Dordrecht, 1987, xiv + 214 pp., $74.00. ISBN 90-277-2320-6.

**1.**

*The conformal transformations of a space of four dimensions and their applications to geometrical optics*, Proc. London Math. Soc. 7 (1909), 70-89.

*Hydrodynamics. A Study in Logic, Fact, and Similitude*, Princeton University Press, Princeton, N. J., 1950. MR

**0038180**

**3.**

*The principle of relativity in electrodynamics and an extension thereof*, Proc. London Math. Soc. 8 (1909), 77-98.

**4.**

*Zur Theorie des Wasserstoffatoms*, Z. Physik 98 (1935), 145-154.

*Ordinary Differential Equations*, Dover Publications, New York, 1944. MR

**0010757**

*Matrix operator symmetries of the Dirac equation and separation of variables*, J. Math. Phys.

**27**(1986), no. 7, 1893–1900. MR

**844233**, DOI 10.1063/1.527395

*Symmetry of the hydrogen atom*, Soviet J. Nuclear Phys.

**3**(1966), 267–274. MR

**0204088**

*Invariant variation problems*, Transport Theory Statist. Phys.

**1**(1971), no. 3, 186–207. MR

**406752**, DOI 10.1080/00411457108231446

*Applications of Lie groups to differential equations*, Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1986. MR

**836734**, DOI 10.1007/978-1-4684-0274-2

*Group analysis of differential equations*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. Translated from the Russian by Y. Chapovsky; Translation edited by William F. Ames. MR

**668703**

*Automatically determining symmetries of partial differential equations*, Computing

**34**(1985), no. 2, 91–106 (English, with German summary). MR

**793075**, DOI 10.1007/BF02259838

Review Information:

Reviewer: Peter J. Olver

Journal: Bull. Amer. Math. Soc.

**19**(1988), 545-550

DOI: https://doi.org/10.1090/S0273-0979-1988-15738-2