Symmetric decreasing rearrangement can be discontinuous
HTML articles powered by AMS MathViewer
- by Frederick J. Almgren Jr. and Elliott H. Lieb PDF
- Bull. Amer. Math. Soc. 20 (1989), 177-180
References
-
[AL] F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous (submitted).
- J.-M. Coron, The continuity of the rearrangement in $W^{1,p}(\textbf {R})$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 57–85. MR 752580
- Bernhard Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. MR 810619, DOI 10.1007/BFb0075060
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. MR 717827, DOI 10.2307/2007032
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486, DOI 10.1515/9781400882663
- Bernhard Ruf and Sergio Solimini, On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions, SIAM J. Math. Anal. 17 (1986), no. 4, 761–771. MR 846387, DOI 10.1137/0517055
Additional Information
- Journal: Bull. Amer. Math. Soc. 20 (1989), 177-180
- MSC (1985): Primary 46E35; Secondary 26B99, 47B38
- DOI: https://doi.org/10.1090/S0273-0979-1989-15754-6
- MathSciNet review: 968686