On a theory of computation and complexity over the real numbers: $NP$- completeness, recursive functions and universal machines
HTML articles powered by AMS MathViewer
- by Lenore Blum, Mike Shub and Steve Smale PDF
- Bull. Amer. Math. Soc. 21 (1989), 1-46
References
-
F. Abramson, Effective computation over the real numbers, Proceedings of the 12th Annual (IEEE) Symposium on Switching and Automata Theory, 1971, pp. 33-37.
- A. Aho, DĆŸ. Hopkroft, and DĆŸ. UlâČman, Postroenie i analiz vychislitelâČnykh algoritmov, âMirâ, Moscow; distributed by Imported Publications, Chicago, Ill., 1979 (Russian). Translated by A. O. Slisenko; Edited by Ju. V. MatijaseviÄ. MR 538444
- Eberhard Becker, On the real spectrum of a ring and its application to semialgebraic geometry, Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 1, 19â60. MR 838786, DOI 10.1090/S0273-0979-1986-15431-5 M. Ben-Or, Lower bounds for algebraic computation trees, Proceedings 15th ACM STOC, 1983, pp. 80-86.
- Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85â141. MR 741725, DOI 10.1090/S0273-0979-1984-15240-6
- A. Borodin, Structured vs. general models in computational complexity, Logic and algorithmic (Zurich, 1980) Monograph. Enseign. Math., vol. 30, Univ. GenĂšve, Geneva, 1982, pp. 47â65. MR 648295
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103â144 (1965). MR 194595, DOI 10.1007/BF02591353 J. Canny, Some algebraic and geometric computations in PSPACE, 20th Annual ACM Symposium on Theory of Computing, 1988, pp. 460-467. S. A. Cook, The complexity of theorem proving procedures, Proceedings 3rd ACM STOC 1971, pp. 151-158.
- Nigel Cutland, Computability, Cambridge University Press, Cambridge-New York, 1980. An introduction to recursive function theory. MR 572788
- Martin Davis, Computability, Courant Institute of Mathematical Sciences, New York University, New York, 1974. Notes by Barry Jacobs from lectures given during 1973-1974. MR 0347574
- Martin Davis, Yuri MatijaseviÄ, and Julia Robinson, Hilbertâs tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R.I., 1976, pp. 323â378. (loose erratum). MR 0432534
- Martin Davis and Hilary Putnam, Diophantine sets over polynomial rings, Illinois J. Math. 7 (1963), 251â256. MR 147387
- J. Denef, Diophantine sets over $\textbf {Z}[T]$, Proc. Amer. Math. Soc. 69 (1978), no. 1, 148â150. MR 462934, DOI 10.1090/S0002-9939-1978-0462934-X
- J. Denef, The Diophantine problem for polynomial rings and fields of rational functions, Trans. Amer. Math. Soc. 242 , posted on (1978), 391â399. MR 0491583, DOI 10.1090/S0002-9947-1978-0491583-7 B. C. Eaves and U. G. Rothblum, A theory on extending algorithms for parametric problems, Department of O.R., Stanford Univ., 1985.
- Samuel Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1974. MR 0530382
- Erwin Engeler, Algorithmic approximations, J. Comput. System Sci. 5 (1971), 67â82. MR 293874, DOI 10.1016/S0022-0000(71)80008-9
- Harvey Friedman, Algorithmic procedures, generalized Turing algorithms, and elementary recursion theory, Logic Colloquium â69 (Proc. Summer School and Colloq., Manchester, 1969) North-Holland, Amsterdam, 1971, pp. 361â389. MR 0304140
- Ker-I Ko and Harvey Friedman, Computational complexity of real functions, Theoret. Comput. Sci. 20 (1982), no. 3, 323â352. MR 666209, DOI 10.1016/S0304-3975(82)80003-0 N. Friedman, Some results on the effects of arithmetic comparisons, Proceedings of the 13th Annual (IEEE) Symposium on Switching and Automata Theory, 1972, pp. 139-143.
- Michael R. Garey and David S. Johnson, Computers and intractability, A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness. MR 519066
- D. Yu. GrigorâČev and N. N. Vorobjov Jr., Solving systems of polynomial inequalities in subexponential time, J. Symbolic Comput. 5 (1988), no. 1-2, 37â64. MR 949112, DOI 10.1016/S0747-7171(88)80005-1
- L. A. Harrington, M. D. Morley, and S. G. Simpson (eds.), Harvey Friedmanâs research on the foundations of mathematics, Studies in Logic and the Foundations of Mathematics, vol. 117, North-Holland Publishing Co., Amsterdam, 1985. MR 835250
- Gabor T. Herman and Stephen D. Isard, Computability over arbitrary fields, J. London Math. Soc. (2) 2 (1970), 71â79. MR 249298, DOI 10.1112/jlms/s2-2.1.73 H. J. Hoover, Feasibly constructive analysis, Ph.D. Thesis, Department of Computer Science, Univ. of Toronto, 1987.
- J. P. Jones and Y. V. MatijaseviÄ, Register machine proof of the theorem on exponential Diophantine representation of enumerable sets, J. Symbolic Logic 49 (1984), no. 3, 818â829. MR 758933, DOI 10.2307/2274135
- Myong-Hi Kim, Topological complexity of a root finding algorithm, J. Complexity 5 (1989), no. 3, 331â344. MR 1018023, DOI 10.1016/0885-064X(89)90029-0 C. Kreitz and K. Weihrauch, Complexity theory on real numbers and functions, Lecture Notes in Computer Sci., 145, Theoretical Computer Science, (A. B. Cremers and H. P. Kreigel eds.), Springer-Verlag, Berlin and New York, 1982, pp. 165-174.
- LĂĄszlĂł LovĂĄsz, An algorithmic theory of numbers, graphs and convexity, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 50, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1986. MR 861822, DOI 10.1137/1.9781611970203
- Michael Machtey and Paul Young, An introduction to the general theory of algorithms, The Computer Science Library: Theory of Computation Series, North-Holland, New York-Oxford-Shannon, 1978. MR 0483344
- Yu. I. Manin, A course in mathematical logic, Graduate Texts in Mathematics, Vol. 53, Springer-Verlag, New York-Berlin, 1977. Translated from the Russian by Neal Koblitz. MR 0457126, DOI 10.1007/978-1-4757-4385-2
- Zohar Manna, Mathematical theory of computation, McGraw-Hill Computer Science Series, McGraw-Hill Book Co., New York-DĂŒsseldorf-Johannesburg, 1974. MR 0400771
- Barry Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 207â259. MR 828821, DOI 10.1090/S0273-0979-1986-15430-3
- J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275â280. MR 161339, DOI 10.1090/S0002-9939-1964-0161339-9
- Marvin L. Minsky, Computation: finite and infinite machines, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0356580 Y. N. Moschovakis, Foundations of the theory of algorithms. I, draft 1986. V. Ya Pan, Methods of computing values of polynomials, Russian Math. Surveys 21 no. 1 (1966), 105-136.
- Marian Boykan Pour-El and Ian Richards, Computability and noncomputability in classical analysis, Trans. Amer. Math. Soc. 275 (1983), no. 2, 539â560. MR 682717, DOI 10.1090/S0002-9947-1983-0682717-1
- Franco P. Preparata and Michael Ian Shamos, Computational geometry, Texts and Monographs in Computer Science, Springer-Verlag, New York, 1985. An introduction. MR 805539, DOI 10.1007/978-1-4612-1098-6
- Michael O. Rabin, Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341â360. MR 113807, DOI 10.1090/S0002-9947-1960-0113807-4
- Michael O. Rabin, Proving simultaneous positivity of linear forms, J. Comput. System Sci. 6 (1972), 639â650. MR 451858, DOI 10.1016/S0022-0000(72)80034-5 J. Renegar, A faster PSPACE algorithm for deciding the existential theory of the reals, Technical Report No. 792, School of Operations Research and Industrial Engineering, Cornell, April 1988. (Also, Proceedings of the 29th Annual Symposium on Foundations of Computer Science, 1988, pp. 291-295.)
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. MR 0224462
- Adi Shamir, Factoring numbers in $O(\textrm {log}\,n)$ arithmetic steps, Inform. Process. Lett. 8 (1979), no. 1, 28â31. MR 515509, DOI 10.1016/0020-0190(79)90087-5
- J. C. Shepherdson and H. E. Sturgis, Computability of recursive functions, J. Assoc. Comput. Mach. 10 (1963), 217â255. MR 151374, DOI 10.1145/321160.321170
- Arnold Schönhage, On the power of random access machines, Automata, languages and programming (Sixth Colloq., Graz, 1979) Lecture Notes in Comput. Sci., vol. 71, Springer, Berlin, 1979, pp. 520â529. MR 573259, DOI 10.1007/3-540-09510-1_{4}2
- Steve Smale, On the topology of algorithms. I, J. Complexity 3 (1987), no. 2, 81â89. MR 907191, DOI 10.1016/0885-064X(87)90021-5
- Eduardo D. Sontag, Polynomial response maps, Lecture Notes in Control and Information Sciences, vol. 13, Springer-Verlag, Berlin-New York, 1979. MR 541302, DOI 10.1007/BFb0042025
- J. Michael Steele and Andrew C. Yao, Lower bounds for algebraic decision trees, J. Algorithms 3 (1982), no. 1, 1â8. MR 646886, DOI 10.1016/0196-6774(82)90002-5
- Volker Strassen, Algebraische BerechnungskomplexitĂ€t, Perspectives in mathematics, BirkhĂ€user, Basel, 1984, pp. 509â550 (German). MR 779688 D. Sullivan, Quasi-conformal homomorphisms and dynamics. III, IHES preprint.
- Alfred Tarski, A decision method for elementary algebra and geometry, University of California Press, Berkeley-Los Angeles, Calif., 1951. 2nd ed. MR 0044472, DOI 10.1525/9780520348097
- RenĂ© Thom, Sur lâhomologie des variĂ©tĂ©s algĂ©briques rĂ©elles, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 255â265 (French). MR 0200942
- J. Tiuryn, A survey of the logic of effective definitions, Logic of programs (ZĂŒrich, 1979) Lecture Notes in Comput. Sci., vol. 125, Springer, Berlin, 1981, pp. 198â245. MR 735280, DOI 10.1007/3-540-11160-3_{7}
- J. F. Traub and H. WoĆșniakowski, Complexity of linear programming, Oper. Res. Lett. 1 (1981/82), no. 2, 59â62. MR 669863, DOI 10.1016/0167-6377(82)90047-5
- L. G. Valiant, Completeness classes in algebra, Conference Record of the Eleventh Annual ACM Symposium on Theory of Computing (Atlanta, Ga., 1979) ACM, New York, 1979, pp. 249â261. MR 564634
- Lou van den Dries, Alfred Tarskiâs elimination theory for real closed fields, J. Symbolic Logic 53 (1988), no. 1, 7â19. MR 929371, DOI 10.2307/2274424
- Joachim von zur Gathen, Algebraic complexity theory, Annual review of computer science, Vol. 3, Annual Reviews, Palo Alto, CA, 1988, pp. 317â347. MR 1001207
- Shmuel Winograd, Arithmetic complexity of computations, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 33, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1980. MR 565260, DOI 10.1137/1.9781611970364
Additional Information
- Journal: Bull. Amer. Math. Soc. 21 (1989), 1-46
- MSC (1985): Primary 03D15, 68Q15; Secondary 65V05
- DOI: https://doi.org/10.1090/S0273-0979-1989-15750-9
- MathSciNet review: 974426