Amenable group actions on the integers; an independence result
HTML articles powered by AMS MathViewer
- by Matthew Foreman PDF
- Bull. Amer. Math. Soc. 21 (1989), 237-240
References
-
[B] S. Banach, Sur le problème de la mesure, Fund. Math. 4 (1923), 7-33.
- James E. Baumgartner and Richard Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), no. 3, 271–288. MR 556894, DOI 10.1016/0003-4843(79)90010-X
- Ching Chou, The exact cardinality of the set of invariant means on a group, Proc. Amer. Math. Soc. 55 (1976), no. 1, 103–106. MR 394036, DOI 10.1090/S0002-9939-1976-0394036-3 [D] V. G. Drinfield, Solution of the Banach-Ruziewicz problem on S, Functional Anal. Appl. 18 (1984), 77-78.
- Stefan Krasa, Nonuniqueness of invariant means for amenable group actions, Monatsh. Math. 100 (1985), no. 2, 121–125. MR 809116, DOI 10.1007/BF01295668
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342 [M] R. Mckenzie, private correspondence.
- G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), no. 3, 233–235. MR 596890, DOI 10.1007/BF01295368
- G. A. Margulis, Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 383–396 (1983). MR 721730, DOI 10.1017/S014338570000167X
- Joseph Rosenblatt and Michel Talagrand, Different types of invariant means, J. London Math. Soc. (2) 24 (1981), no. 3, 525–532. MR 635883, DOI 10.1112/jlms/s2-24.3.525
- Dennis Sullivan, For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 121–123. MR 590825, DOI 10.1090/S0273-0979-1981-14880-1
- Zhuocheng Yang, Action of amenable groups and uniqueness of invariant means, J. Funct. Anal. 97 (1991), no. 1, 50–63. MR 1105654, DOI 10.1016/0022-1236(91)90015-W
Additional Information
- Journal: Bull. Amer. Math. Soc. 21 (1989), 237-240
- MSC (1985): Primary 38D35, 60B99; Secondary 43A07
- DOI: https://doi.org/10.1090/S0273-0979-1989-15815-1
- MathSciNet review: 998197