Finiteness and vanishing theorems for complete open Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Zhongmin Shen PDF
- Bull. Amer. Math. Soc. 21 (1989), 241-244
References
- Uwe Abresch and Detlef Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), no. 2, 355–374. MR 1030656, DOI 10.1090/S0894-0347-1990-1030656-6
- Jeff Cheeger and Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413–443. MR 309010, DOI 10.2307/1970819
- Detlef Gromoll and Wolfgang T. Meyer, Examples of complete manifolds with positive Ricci curvature, J. Differential Geom. 21 (1985), no. 2, 195–211. MR 816669
- R. E. Greene and H. Wu, Integrals of subharmonic functions on manifolds of nonnegative curvature, Invent. Math. 27 (1974), 265–298. MR 382723, DOI 10.1007/BF01425500
- Philip Hartman, Oscillation criteria for selfadjoint second-order differential systems and “principal sectional curvatures”, J. Differential Equations 34 (1979), no. 2, 326–338. MR 550049, DOI 10.1016/0022-0396(79)90013-5
- John Milnor, On the $3$-dimensional Brieskorn manifolds $M(p,q,r)$, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 175–225. MR 0418127 [SY1] J. Sha and D. Yang, Examples of manifolds of positive Ricci curvature, J. Differential Geom. (to appear). [SY2] J. Sha and D. Yang, Positive Ricci curvature on the connected sums of S, Preprint.
- H. Wu, An elementary method in the study of nonnegative curvature, Acta Math. 142 (1979), no. 1-2, 57–78. MR 512212, DOI 10.1007/BF02395057
- H. Wu, Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), no. 3, 525–548. MR 905609, DOI 10.1512/iumj.1987.36.36029
- Guofang Wei, Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 311–313. MR 940494, DOI 10.1090/S0273-0979-1988-15653-4
Additional Information
- Journal: Bull. Amer. Math. Soc. 21 (1989), 241-244
- MSC (1985): Primary 53C20
- DOI: https://doi.org/10.1090/S0273-0979-1989-15817-5
- MathSciNet review: 998628