Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567823
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: David A. Vogan Jr.
Title: Unitary representations of reductive Lie groups
Additional book information: Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, N. J., 1987, x + 308 pp., $60.00 cloth, $19.50 paper. ISBN 0-691-08481-5, ISBN 0-691-08482-3.

References [Enhancements On Off] (What's this?)

  • Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
  • Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), no. 3-4, 153–213 (French). MR 688348, DOI 10.1007/BF02392353
  • Mogens Flensted-Jensen, Analysis on non-Riemannian symmetric spaces, CBMS Regional Conference Series in Mathematics, vol. 61, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 837420, DOI 10.1090/cbms/061
  • Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
  • Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
  • Anthony W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR 938524
  • Henrik Schlichtkrull, Hyperfunctions and harmonic analysis on symmetric spaces, Progress in Mathematics, vol. 49, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 757178, DOI 10.1007/978-1-4612-5298-6
  • V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer-Verlag, Berlin-New York, 1977. MR 0473111
  • David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
  • David A. Vogan Jr., The unitary dual of $\textrm {GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505. MR 827363, DOI 10.1007/BF01394418
  • Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
  • Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
  • 13.
    G. J. Zuckerman, Construction of representations via derived functors, Lectures at Institute for Advanced Study, Princeton, N. J., Spring 1978.

    Review Information:

    Reviewer: A. W. Knapp
    Journal: Bull. Amer. Math. Soc. 21 (1989), 380-384
    DOI: https://doi.org/10.1090/S0273-0979-1989-15872-2