The classification of nonlinear similarities over ${\text {Z}}_{2^r }$
HTML articles powered by AMS MathViewer
- by Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, Shmuel Weinberger and James E. West PDF
- Bull. Amer. Math. Soc. 22 (1990), 51-57
References
- Sylvain E. Cappell and Julius L. Shaneson, Nonlinear similarity, Ann. of Math. (2) 113 (1981), no.ย 2, 315โ355. MR 607895, DOI 10.2307/2006986 [CS2] S. E. Cappell and J. L. Shaneson, Non-linear similarity and linear similarity are equivalent below dimension six(to appear).
- Sylvain E. Cappell and Julius L. Shaneson, Torsion in $L$-groups, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp.ย 22โ50. MR 802784, DOI 10.1007/BFb0074437
- Sylvain E. Cappell and Julius L. Shaneson, The topological rationality of linear representations, Inst. Hautes รtudes Sci. Publ. Math. 56 (1982), 101โ128 (1983). MR 686043, DOI 10.1007/BF02700463
- Sylvain E. Cappell and Julius L. Shaneson, Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), no.ย 1, 1โ19. MR 666635, DOI 10.1007/BF01394267 [CS6] S. E. Cappell and J. L. Shaneson, Determinants of ε-symmetric forms over Z[Z2r] (to appear).
- Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, and James E. West, Nonlinear similarity begins in dimension six, Amer. J. Math. 111 (1989), no.ย 5, 717โ752. MR 1020826, DOI 10.2307/2374878 [CSW] S. E. Cappell, J. L. Shaneson and S. Weinberger, A topological equivariant signature theorem for singular varieties (to appear). [dR] G. de Rham, Moscow Topology Conference, 1934.
- W. C. Hsiang and William Pardon, When are topologically equivalent orthogonal transformations linearly equivalent?, Invent. Math. 68 (1982), no.ย 2, 275โ316. MR 666164, DOI 10.1007/BF01394060 [MR] I. Madsen and M. Rothenberg, On the classification of G-spheres. I—III, preprints. [MRS] I. Madsen, M. Rothenberg, and M. Steinberger, Locally linear G-surgery (to appear).
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358โ426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2 [M] W. Mio, Thesis, NYU. [RoseW] J. Rosenberg and S. Weinberger, Higher G-indices of smooth and Lipschitz manifolds and their applications, (to appear).
- Mel Rothenberg and Shmuel Weinberger, Group actions and equivariant Lipschitz analysis, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no.ย 1, 109โ112. MR 888883, DOI 10.1090/S0273-0979-1987-15525-X
- Reinhard Schultz, On the topological classification of linear representations, Topology 16 (1977), no.ย 3, 263โ269. MR 500964, DOI 10.1016/0040-9383(77)90007-6
- Mark Steinberger, The equivariant topological $s$-cobordism theorem, Invent. Math. 91 (1988), no.ย 1, 61โ104. MR 918237, DOI 10.1007/BF01404913
- Mark Steinberger and James West, Approximation by equivariant homeomorphisms. I, Trans. Amer. Math. Soc. 302 (1987), no.ย 1, 297โ317. MR 887511, DOI 10.1090/S0002-9947-1987-0887511-8 [SW2] M. Steinberger and J. E. West, Controlled finiteness is the obstruction to equivariant handle decomposition (to appear).
- C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), no.ย 1, 1โ80. MR 432737, DOI 10.2307/1971019
Additional Information
- Journal: Bull. Amer. Math. Soc. 22 (1990), 51-57
- MSC (1985): Primary 57S17, 57S25, 57N17; Secondary 20C99, 58F10, 58F19
- DOI: https://doi.org/10.1090/S0273-0979-1990-15837-9
- MathSciNet review: 1003861