## The classification of nonlinear similarities over ${\text {Z}}_{2^r }$

HTML articles powered by AMS MathViewer

- by Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, Shmuel Weinberger and James E. West PDF
- Bull. Amer. Math. Soc.
**22**(1990), 51-57

## References

- Sylvain E. Cappell and Julius L. Shaneson,
*Nonlinear similarity*, Ann. of Math. (2)**113**(1981), no.ย 2, 315โ355. MR**607895**, DOI 10.2307/2006986
[CS2] S. E. Cappell and J. L. Shaneson, Non-linear similarity and linear similarity are equivalent below dimension six(to appear).
- Sylvain E. Cappell and Julius L. Shaneson,
*Torsion in $L$-groups*, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp.ย 22โ50. MR**802784**, DOI 10.1007/BFb0074437 - Sylvain E. Cappell and Julius L. Shaneson,
*The topological rationality of linear representations*, Inst. Hautes รtudes Sci. Publ. Math.**56**(1982), 101โ128 (1983). MR**686043**, DOI 10.1007/BF02700463 - Sylvain E. Cappell and Julius L. Shaneson,
*Fixed points of periodic differentiable maps*, Invent. Math.**68**(1982), no.ย 1, 1โ19. MR**666635**, DOI 10.1007/BF01394267
[CS6] S. E. Cappell and J. L. Shaneson, Determinants of ε-symmetric forms over Z[Z2r] (to appear).
- Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, and James E. West,
*Nonlinear similarity begins in dimension six*, Amer. J. Math.**111**(1989), no.ย 5, 717โ752. MR**1020826**, DOI 10.2307/2374878
[CSW] S. E. Cappell, J. L. Shaneson and S. Weinberger, A topological equivariant signature theorem for singular varieties (to appear).
[dR] G. de Rham, Moscow Topology Conference, 1934.
- W. C. Hsiang and William Pardon,
*When are topologically equivalent orthogonal transformations linearly equivalent?*, Invent. Math.**68**(1982), no.ย 2, 275โ316. MR**666164**, DOI 10.1007/BF01394060
[MR] I. Madsen and M. Rothenberg, On the classification of G-spheres. I—III, preprints.
[MRS] I. Madsen, M. Rothenberg, and M. Steinberger, Locally linear G-surgery (to appear).
- J. Milnor,
*Whitehead torsion*, Bull. Amer. Math. Soc.**72**(1966), 358โ426. MR**196736**, DOI 10.1090/S0002-9904-1966-11484-2
[M] W. Mio, Thesis, NYU.
[RoseW] J. Rosenberg and S. Weinberger, Higher G-indices of smooth and Lipschitz manifolds and their applications, (to appear).
- Mel Rothenberg and Shmuel Weinberger,
*Group actions and equivariant Lipschitz analysis*, Bull. Amer. Math. Soc. (N.S.)**17**(1987), no.ย 1, 109โ112. MR**888883**, DOI 10.1090/S0273-0979-1987-15525-X - Reinhard Schultz,
*On the topological classification of linear representations*, Topology**16**(1977), no.ย 3, 263โ269. MR**500964**, DOI 10.1016/0040-9383(77)90007-6 - Mark Steinberger,
*The equivariant topological $s$-cobordism theorem*, Invent. Math.**91**(1988), no.ย 1, 61โ104. MR**918237**, DOI 10.1007/BF01404913 - Mark Steinberger and James West,
*Approximation by equivariant homeomorphisms. I*, Trans. Amer. Math. Soc.**302**(1987), no.ย 1, 297โ317. MR**887511**, DOI 10.1090/S0002-9947-1987-0887511-8
[SW2] M. Steinberger and J. E. West, Controlled finiteness is the obstruction to equivariant handle decomposition (to appear).
- C. T. C. Wall,
*Classification of Hermitian Forms. VI. Group rings*, Ann. of Math. (2)**103**(1976), no.ย 1, 1โ80. MR**432737**, DOI 10.2307/1971019

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**22**(1990), 51-57 - MSC (1985): Primary 57S17, 57S25, 57N17; Secondary 20C99, 58F10, 58F19
- DOI: https://doi.org/10.1090/S0273-0979-1990-15837-9
- MathSciNet review: 1003861