Symmetry breaking in equivariant bifurcation problems
HTML articles powered by AMS MathViewer
- by M. J. Field and R.W. Richardson PDF
- Bull. Amer. Math. Soc. 22 (1990), 79-84
References
- Mike Field, Equivariant bifurcation theory and symmetry breaking, J. Dynam. Differential Equations 1 (1989), no. 4, 369–421. MR 1020711, DOI 10.1007/BF01048455
- M. J. Field and R. W. Richardson, Symmetry breaking and the maximal isotropy subgroup conjecture for reflection groups, Arch. Rational Mech. Anal. 105 (1989), no. 1, 61–94. MR 963908, DOI 10.1007/BF00251598
- Martin Golubitsky, The Bénard problem, symmetry and the lattice of isotropy subgroups, Bifurcation theory, mechanics and physics, Math. Appl., Reidel, Dordrecht, 1983, pp. 225–256. MR 726253 [GGS] M. Golubitsky, D. Schaefer and I. Stewart, Singularities and groups in bifurcation theory, Vol. 2, Applied Mathematical Sciences 69, Springer-Verlag, New York-Berlin-Heidelberg, 1988. [M] L. Michel, Minima of Higgs Landau polynomials, Regards sur la Physique contemporaine (1980), 157-203, Edition CNRS, Paris, 1980.
Additional Information
- Journal: Bull. Amer. Math. Soc. 22 (1990), 79-84
- MSC (1985): Primary 58F14, 58F10
- DOI: https://doi.org/10.1090/S0273-0979-1990-15846-X
- MathSciNet review: 1006282