Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Symmetry breaking in equivariant bifurcation problems
HTML articles powered by AMS MathViewer

by M. J. Field and R.W. Richardson PDF
Bull. Amer. Math. Soc. 22 (1990), 79-84
References
  • Mike Field, Equivariant bifurcation theory and symmetry breaking, J. Dynam. Differential Equations 1 (1989), no. 4, 369–421. MR 1020711, DOI 10.1007/BF01048455
  • M. J. Field and R. W. Richardson, Symmetry breaking and the maximal isotropy subgroup conjecture for reflection groups, Arch. Rational Mech. Anal. 105 (1989), no. 1, 61–94. MR 963908, DOI 10.1007/BF00251598
  • Martin Golubitsky, The Bénard problem, symmetry and the lattice of isotropy subgroups, Bifurcation theory, mechanics and physics, Math. Appl., Reidel, Dordrecht, 1983, pp. 225–256. MR 726253
  • [GGS] M. Golubitsky, D. Schaefer and I. Stewart, Singularities and groups in bifurcation theory, Vol. 2, Applied Mathematical Sciences 69, Springer-Verlag, New York-Berlin-Heidelberg, 1988. [M] L. Michel, Minima of Higgs Landau polynomials, Regards sur la Physique contemporaine (1980), 157-203, Edition CNRS, Paris, 1980.
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 58F14, 58F10
  • Retrieve articles in all journals with MSC (1985): 58F14, 58F10
Additional Information
  • Journal: Bull. Amer. Math. Soc. 22 (1990), 79-84
  • MSC (1985): Primary 58F14, 58F10
  • DOI: https://doi.org/10.1090/S0273-0979-1990-15846-X
  • MathSciNet review: 1006282