## Accurate strategies for small divisor problems

HTML articles powered by AMS MathViewer

- by R. de la Llave and David Rana PDF
- Bull. Amer. Math. Soc.
**22**(1990), 85-90

## References

- V. I. Arnol′d,
*Geometrical methods in the theory of ordinary differential equations*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York-Berlin, 1983. Translated from the Russian by Joseph Szücs; Translation edited by Mark Levi. MR**695786**, DOI 10.1007/978-1-4684-0147-9 - Alessandra Celletti and Luigi Chierchia,
*Construction of analytic KAM surfaces and effective stability bounds*, Comm. Math. Phys.**118**(1988), no. 1, 119–161. MR**954678**, DOI 10.1007/BF01218480 - D. Braess and E. Zehnder,
*On the numerical treatment of a small divisor problem*, Numer. Math.**39**(1982), no. 2, 269–292. MR**669322**, DOI 10.1007/BF01408700 - Oscar E. Lanford III,
*Computer-assisted proofs in analysis*, Phys. A**124**(1984), no. 1-3, 465–470. Mathematical physics, VII (Boulder, Colo., 1983). MR**759197**, DOI 10.1016/0378-4371(84)90262-0 - C. Liverani, G. Servizi, and G. Turchetti,
*Some KAM estimates for the Siegel centre problem*, Lett. Nuovo Cimento (2)**39**(1984), no. 17, 417–423. MR**746559**, DOI 10.1007/BF02790574 - Ramon E. Moore,
*Methods and applications of interval analysis*, SIAM Studies in Applied Mathematics, vol. 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1979. MR**551212**, DOI 10.1137/1.9781611970906 - Jürgen Moser,
*Is the solar system stable?*, Math. Intelligencer**1**(1978/79), no. 2, 65–71. MR**495314**, DOI 10.1007/BF03023062 - R. S. MacKay and I. C. Percival,
*Converse KAM: theory and practice*, Comm. Math. Phys.**98**(1985), no. 4, 469–512. MR**789867**, DOI 10.1007/BF01209326
[R] D. Rana, Proof of accurate upper and lower bounds to stability domains in small denominator problems, Thesis, Prinecton Univ., 1987.
- J. Stark,
*An exhaustive criterion for the nonexistence of invariant circles for area-preserving twist maps*, Comm. Math. Phys.**117**(1988), no. 2, 177–189. MR**946999**, DOI 10.1007/BF01223588 - E. Zehnder,
*Generalized implicit function theorems with applications to some small divisor problems. I*, Comm. Pure Appl. Math.**28**(1975), 91–140. MR**380867**, DOI 10.1002/cpa.3160280104

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**22**(1990), 85-90 - MSC (1985): Primary 39-04, 39B99, 70K50, 58F27; Secondary 65J15, 30D05, 58F30, 58F10
- DOI: https://doi.org/10.1090/S0273-0979-1990-15848-3
- MathSciNet review: 1008096