A generalization of Selberg’s beta integral
Author:
Robert A. Gustafson
Journal:
Bull. Amer. Math. Soc. 22 (1990), 97-105
MSC (1985):
Primary 33A15, 33A75, 05A19
DOI:
https://doi.org/10.1090/S0273-0979-1990-15852-5
MathSciNet review:
1001607
Full-text PDF Free Access
References | Similar Articles | Additional Information
- K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18 (1987), no. 2, 545–549. MR 876291, DOI https://doi.org/10.1137/0518042
- George E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Academic Press, New York, 1975, pp. 191–224. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. MR 0399528
- Richard Askey, Beta integrals and $q$-extensions, Proceedings of the Ramanujan Centennial International Conference (Annamalainagar, 1987) RMS Publ., vol. 1, Ramanujan Math. Soc., Annamalainagar, 1988, pp. 85–102. MR 993347
- Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55. MR 783216, DOI https://doi.org/10.1090/memo/0319 5. E. W. Barnes, A new development of the theory of hypergeometric functions, Proc. London, Math. Soc. (2) 6 (1908), 141-177.
- Louis de Branges, Tensor product spaces, J. Math. Anal. Appl. 38 (1972), 109–148. MR 417337, DOI https://doi.org/10.1016/0022-247X%2872%2990122-9
- Freeman J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Mathematical Phys. 3 (1962), 140–156. MR 143556, DOI https://doi.org/10.1063/1.1703773 8. F. Garvan, A proof of the Macdonald-Morris root system conjecture for F, preprint. 9. F. Garvan and G. H. Gonnet, A proof of the two parameter q-case of the Macdonald-Morris root system conjecture for S(F, preprint.
- J. Gunson, Proof of a conjecture by Dyson in the statistical theory of energy levels, J. Mathematical Phys. 3 (1962), 752–753. MR 148401, DOI https://doi.org/10.1063/1.1724277
- Robert A. Gustafson, Some $q$-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras, Trans. Amer. Math. Soc. 341 (1994), no. 1, 69–119. MR 1139492, DOI https://doi.org/10.1090/S0002-9947-1994-1139492-3 12. R. Gustafson, Some multidimensional beta type integrals, preprint.
- Laurent Habsieger, La $q$-conjecture de Macdonald-Morris pour $G_2$, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 6, 211–213 (French, with English summary). MR 860819
- Kevin W. J. Kadell, A proof of the $q$-Macdonald-Morris conjecture for $BC_n$, Mem. Amer. Math. Soc. 108 (1994), no. 516, vi+80. MR 1140650, DOI https://doi.org/10.1090/memo/0516
- I. G. Macdonald, Affine root systems and Dedekind’s $\eta $-function, Invent. Math. 15 (1972), 91–143. MR 357528, DOI https://doi.org/10.1007/BF01418931
- I. G. Macdonald, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174. MR 322069, DOI https://doi.org/10.1007/BF01431421
- I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13 (1982), no. 6, 988–1007. MR 674768, DOI https://doi.org/10.1137/0513070
- M. L. Mehta, Random matrices and the statistical theory of energy levels, Academic Press, New York-London, 1967. MR 0220494 19. W. G. Morris, Constant term identities for finite and affine root systems: conjectures and theorems, Ph. D. thesis, Univ. of Wisconsin-Madison, 1982.
- E. M. Opdam, Some applications of hypergeometric shift operators, Invent. Math. 98 (1989), no. 1, 1–18. MR 1010152, DOI https://doi.org/10.1007/BF01388841
- Mizan Rahman, Another conjectured $q$-Selberg integral, SIAM J. Math. Anal. 17 (1986), no. 5, 1267–1279. MR 853529, DOI https://doi.org/10.1137/0517088 22. S. Ramanujan, A class of definite integrals, Quart. J. Math. 48 (1920), 294-310.
- Atle Selberg, Remarks on a multiple integral, Norsk Mat. Tidsskr. 26 (1944), 71–78 (Norwegian). MR 18287
- James A. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), no. 4, 690–701. MR 579561, DOI https://doi.org/10.1137/0511064
- Kenneth G. Wilson, Proof of a conjecture by Dyson, J. Mathematical Phys. 3 (1962), 1040–1043. MR 144627, DOI https://doi.org/10.1063/1.1724291
- Doron Zeilberger, A proof of the $G_2$ case of Macdonald’s root system-Dyson conjecture, SIAM J. Math. Anal. 18 (1987), no. 3, 880–883. MR 883574, DOI https://doi.org/10.1137/0518065
- Doron Zeilberger, A unified approach to Macdonald’s root-system conjectures, SIAM J. Math. Anal. 19 (1988), no. 4, 987–1013. MR 946656, DOI https://doi.org/10.1137/0519068
- Doron Zeilberger and David M. Bressoud, A proof of Andrews’ $q$-Dyson conjecture, Discrete Math. 54 (1985), no. 2, 201–224. MR 791661, DOI https://doi.org/10.1016/0012-365X%2885%2990081-0
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 33A15, 33A75, 05A19
Retrieve articles in all journals with MSC (1985): 33A15, 33A75, 05A19