A generalization of Selberg’s beta integral
HTML articles powered by AMS MathViewer
- by Robert A. Gustafson PDF
- Bull. Amer. Math. Soc. 22 (1990), 97-105
References
- K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18 (1987), no. 2, 545–549. MR 876291, DOI 10.1137/0518042
- George E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 191–224. MR 0399528
- Richard Askey, Beta integrals and $q$-extensions, Proceedings of the Ramanujan Centennial International Conference (Annamalainagar, 1987) RMS Publ., vol. 1, Ramanujan Math. Soc., Annamalainagar, 1988, pp. 85–102. MR 993347
- Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55. MR 783216, DOI 10.1090/memo/0319 5. E. W. Barnes, A new development of the theory of hypergeometric functions, Proc. London, Math. Soc. (2) 6 (1908), 141-177.
- Louis de Branges, Tensor product spaces, J. Math. Anal. Appl. 38 (1972), 109–148. MR 417337, DOI 10.1016/0022-247X(72)90122-9
- Freeman J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Mathematical Phys. 3 (1962), 140–156. MR 143556, DOI 10.1063/1.1703773 8. F. Garvan, A proof of the Macdonald-Morris root system conjecture for F, preprint. 9. F. Garvan and G. H. Gonnet, A proof of the two parameter q-case of the Macdonald-Morris root system conjecture for S(F, preprint.
- J. Gunson, Proof of a conjecture by Dyson in the statistical theory of energy levels, J. Mathematical Phys. 3 (1962), 752–753. MR 148401, DOI 10.1063/1.1724277
- Robert A. Gustafson, Some $q$-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras, Trans. Amer. Math. Soc. 341 (1994), no. 1, 69–119. MR 1139492, DOI 10.1090/S0002-9947-1994-1139492-3 12. R. Gustafson, Some multidimensional beta type integrals, preprint.
- Laurent Habsieger, La $q$-conjecture de Macdonald-Morris pour $G_2$, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 6, 211–213 (French, with English summary). MR 860819
- Kevin W. J. Kadell, A proof of the $q$-Macdonald-Morris conjecture for $BC_n$, Mem. Amer. Math. Soc. 108 (1994), no. 516, vi+80. MR 1140650, DOI 10.1090/memo/0516
- I. G. Macdonald, Affine root systems and Dedekind’s $\eta$-function, Invent. Math. 15 (1972), 91–143. MR 357528, DOI 10.1007/BF01418931
- I. G. Macdonald, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174. MR 322069, DOI 10.1007/BF01431421
- I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13 (1982), no. 6, 988–1007. MR 674768, DOI 10.1137/0513070
- M. L. Mehta, Random matrices and the statistical theory of energy levels, Academic Press, New York-London, 1967. MR 0220494 19. W. G. Morris, Constant term identities for finite and affine root systems: conjectures and theorems, Ph. D. thesis, Univ. of Wisconsin-Madison, 1982.
- E. M. Opdam, Some applications of hypergeometric shift operators, Invent. Math. 98 (1989), no. 1, 1–18. MR 1010152, DOI 10.1007/BF01388841
- Mizan Rahman, Another conjectured $q$-Selberg integral, SIAM J. Math. Anal. 17 (1986), no. 5, 1267–1279. MR 853529, DOI 10.1137/0517088 22. S. Ramanujan, A class of definite integrals, Quart. J. Math. 48 (1920), 294-310.
- Atle Selberg, Remarks on a multiple integral, Norsk Mat. Tidsskr. 26 (1944), 71–78 (Norwegian). MR 18287
- James A. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), no. 4, 690–701. MR 579561, DOI 10.1137/0511064
- Kenneth G. Wilson, Proof of a conjecture by Dyson, J. Mathematical Phys. 3 (1962), 1040–1043. MR 144627, DOI 10.1063/1.1724291
- Doron Zeilberger, A proof of the $G_2$ case of Macdonald’s root system-Dyson conjecture, SIAM J. Math. Anal. 18 (1987), no. 3, 880–883. MR 883574, DOI 10.1137/0518065
- Doron Zeilberger, A unified approach to Macdonald’s root-system conjectures, SIAM J. Math. Anal. 19 (1988), no. 4, 987–1013. MR 946656, DOI 10.1137/0519068
- Doron Zeilberger and David M. Bressoud, A proof of Andrews’ $q$-Dyson conjecture, Discrete Math. 54 (1985), no. 2, 201–224. MR 791661, DOI 10.1016/0012-365X(85)90081-0
Additional Information
- Journal: Bull. Amer. Math. Soc. 22 (1990), 97-105
- MSC (1985): Primary 33A15, 33A75, 05A19
- DOI: https://doi.org/10.1090/S0273-0979-1990-15852-5
- MathSciNet review: 1001607