On the regularity theory of fully nonlinear parabolic equations
HTML articles powered by AMS MathViewer
References
- Luis A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189–213. MR 1005611, DOI 10.2307/1971480
- L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), no. 2, 209–252. MR 780073, DOI 10.1002/cpa.3160380206
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
- Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363. MR 649348, DOI 10.1002/cpa.3160350303
- Robert Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1988), no. 1, 1–27. MR 920674, DOI 10.1007/BF00281780
- N. V. Krylov, Controlled diffusion processes, Applications of Mathematics, vol. 14, Springer-Verlag, New York-Berlin, 1980. Translated from the Russian by A. B. Aries. MR 601776, DOI 10.1007/978-1-4612-6051-6
- N. V. Krylov, The maximum principle for nonlinear parabolic and elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 5, 1050–1062, 1183 (Russian). MR 513913
- N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161–175, 239 (Russian). MR 563790 9. O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’tseva, Linear and quasilinear parabolic equations, "Nauka", Moscow, 1967.
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- Carlo Pucci, Operatori ellittici estremanti, Ann. Mat. Pura Appl. (4) 72 (1966), 141–170 (Italian, with English summary). MR 208150, DOI 10.1007/BF02414332 12. K. S. Tso, On an Aleksandrov-Bakel’ man type maximum principle for second order parabolic equations(to appear).
Additional Information
- Journal: Bull. Amer. Math. Soc. 22 (1990), 107-114
- MSC (1985): Primary 35B65, 35K20
- DOI: https://doi.org/10.1090/S0273-0979-1990-15854-9
- MathSciNet review: 999619