The error term in Nevanlinna theory. II
HTML articles powered by AMS MathViewer
- by Serge Lang PDF
- Bull. Amer. Math. Soc. 22 (1990), 115-125
References
- William W. Adams, Asymptotic Diophantine approximations to $e$, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 28–31. MR 186626, DOI 10.1073/pnas.55.1.28
- William W. Adams, Asymptotic diophantine approximations and Hurwitz numbers, Amer. J. Math. 89 (1967), 1083–1108. MR 222030, DOI 10.2307/2373420
- W. Adams and S. Lang, Some computations in diophantine approximations, J. Reine Angew. Math. 220 (1965), 163–173. MR 182608, DOI 10.1515/crll.1965.220.163
- Lars V. Ahlfors, The theory of meromorphic curves, Acta Soc. Sci. Fennicae. Nova Ser. A 3 (1941), no. 4, 31. MR 4309
- A. D. Brjuno, The expansion of algebraic numbers into continued fractions, Ž. Vyčisl. Mat i Mat. Fiz. 4 (1964), 211–221 (Russian). MR 163884
- James Carlson and Phillip Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math. (2) 95 (1972), 557–584. MR 311935, DOI 10.2307/1970871
- Shiing-shen Chern, Complex analytic mappings of Riemann surfaces. I, Amer. J. Math. 82 (1960), 323–337. MR 115183, DOI 10.2307/2372738
- Phillip A. Griffiths, Entire holomorphic mappings in one and several complex variables, Annals of Mathematics Studies, No. 85, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. The fifth set of Hermann Weyl Lectures, given at the Institute for Advanced Study, Princeton, N. J., October and November 1974. MR 0447638, DOI 10.1515/9781400881482
- Phillip Griffiths and James King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145–220. MR 427690, DOI 10.1007/BF02392265
- Serge Lang, Report on diophantine approximations, Bull. Soc. Math. France 93 (1965), 177–192. MR 193064, DOI 10.24033/bsmf.1621
- Serge Lang, Asymptotic Diophantine approximations, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 31–34. MR 188155, DOI 10.1073/pnas.55.1.31
- Serge Lang, Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0209227
- Serge Lang, Transcendental numbers and diophantine approximations, Bull. Amer. Math. Soc. 77 (1971), 635–677. MR 289424, DOI 10.1090/S0002-9904-1971-12761-1
- Serge Lang, The error term in Nevanlinna theory, Duke Math. J. 56 (1988), no. 1, 193–218. MR 932862, DOI 10.1215/S0012-7094-88-05609-8
- Serge Lang and Hale Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972). MR 306131, DOI 10.1007/978-1-4612-2120-3_{5}
- S. Lang and H. Trotter, Addendum to: “Continued fractions for some algebraic numbers” (J. Reine Angew. Math. 255 (1972), 112–134), J. Reine Angew. Math. 267 (1974), 219–220. MR 349593
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
- John von Neumann and Bryant Tuckerman, Continued fraction expansion of $2^{1/3}$, Math. Tables Aids Comput. 9 (1955), 23–24. MR 68900, DOI 10.1090/S0025-5718-1955-0068900-3
- Charles F. Osgood, A number theoretic-differential equations approach to generalizing Nevanlinna theory, Indian J. Math. 23 (1981), no. 1-3, 1–15. MR 722894
- Charles F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory 21 (1985), no. 3, 347–389. MR 814011, DOI 10.1016/0022-314X(85)90061-7
- R. D. Richtmyer, Marjorie Devaney, and N. Metropolis, Continued fraction expansions of algebraic numbers, Numer. Math. 4 (1962), 68–84. MR 136574, DOI 10.1007/BF01386297
- K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. MR 72182, DOI 10.1112/S0025579300000644
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451, DOI 10.1007/BFb0072989
- Paul Vojta, A refinement of Schmidt’s subspace theorem, Amer. J. Math. 111 (1989), no. 3, 489–518. MR 1002010, DOI 10.2307/2374670
- Pit-Mann Wong, On the second main theorem of Nevanlinna theory, Amer. J. Math. 111 (1989), no. 4, 549–583. MR 1011549, DOI 10.2307/2374813
Additional Information
- Journal: Bull. Amer. Math. Soc. 22 (1990), 115-125
- MSC (1985): Primary 11J68, 30D35, 32H30
- DOI: https://doi.org/10.1090/S0273-0979-1990-15857-4
- MathSciNet review: 1003864