Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567835
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Jack K. Hale
Title: Asymptotic behavior of dissipative systems
Additional book information: Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, R.I., 1988, ix + 198 pp., $54.00. ISBN 0-8218-1527-x.

References [Enhancements On Off] (What's this?)

1.
S. B. Angement, The Morse-Smale property for a semilinear boundary value problem, J. Differential Equations 67 (1987), 212-242.
  • A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl. (9) 62 (1983), no. 4, 441–491 (1984). MR 735932
  • J. E. Billotti and J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971), 1082–1088. MR 284682, DOI 10.1090/S0002-9904-1971-12879-3
  • Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309–353. MR 943945, DOI 10.1016/0022-0396(88)90110-6
  • C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339–368. MR 544257
  • Jean-Michel Ghidaglia and Jean-Claude Saut, Équations aux dérivées partielles non linéaires dissipatives et systèmes dynamiques, Équations aux dérivées partielles non linéaires dissipatives et systèmes dynamiques, Travaux en Cours, vol. 28, Hermann, Paris, 1988, pp. 11–46 (French). MR 948675
  • Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
  • Jack K. Hale, Luis T. Magalhães, and Waldyr M. Oliva, An introduction to infinite-dimensional dynamical systems—geometric theory, Applied Mathematical Sciences, vol. 47, Springer-Verlag, New York, 1984. With an appendix by Krzysztof P. Rybakowski. MR 725501, DOI 10.1007/0-387-22896-9_{9}
  • 9.
    J. K. Hale and G. Raugel, Lower semicontinuity of the attractor for gradient systems, Annali di Mat. Pura e Applicata (1989).
  • Daniel B. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations 59 (1985), no. 2, 165–205. MR 804887, DOI 10.1016/0022-0396(85)90153-6
  • O. A. Ladyženskaja, The dynamical system that is generated by the Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 27 (1972), 91–115 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 6. MR 0328378
  • 12.
    O. A. Ladyzhenskaya, Dynamical system generated by the Navier-Stokes equations, Soviet Physics Dokl. 17 (1973), 647-649.
  • Norman Levinson, Transformation theory of non-linear differential equations of the second order, Ann. of Math. (2) 45 (1944), 723–737. MR 11505, DOI 10.2307/1969299
  • John Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations 22 (1976), no. 2, 331–348. MR 423399, DOI 10.1016/0022-0396(76)90032-2
  • John Mallet-Paret and George R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 805–866. MR 943276, DOI 10.1090/S0894-0347-1988-0943276-7
  • Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 230–242. MR 654892
  • V. A. Pliss, Nonlocal problems of the theory of oscillations, Academic Press, New York-London, 1966. Translated from the Russian by Scripta Technica, Inc; Translation edited by Harry Herman. MR 0196199
  • Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967, DOI 10.1007/978-1-4684-0313-8

  • Review Information:

    Reviewer: Geneviève Raugel
    Journal: Bull. Amer. Math. Soc. 22 (1990), 175-183
    DOI: https://doi.org/10.1090/S0273-0979-1990-15875-6