Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
1567838
Full text of review:
PDF
This review is available free of charge.
Book Information:
Authors:
D. F. McGhee and
R. H. Picard
Title:
Cordes' two-parameter spectral representation theory
Additional book information:
Pitman Research Notes in Mathematics Series, Volume 177, Longman Scientific and Technical, Harlow, United Kingdom and New York, 1988, 114 pp., $41.95. ISBN 0-470-21084-2.
F. M. Arscott, A new treatment of the ellipsoidal wave equation, Proc. London Math. Soc. (3) 9 (1959), 21–50. MR 104837, DOI 10.1112/plms/s3-9.1.21
F. M. Arscott, Two-parameter eigenvalue problems in differential equations, Proc. London Math. Soc. (3) 14 (1964), 459–470. MR 165164, DOI 10.1112/plms/s3-14.3.459
F. V. Atkinson, Multiparameter spectral theory, Bull. Amer. Math. Soc. 74 (1968), 1–27. MR 220078, DOI 10.1090/S0002-9904-1968-11866-X
F. V. Atkinson, Multiparameter eigenvalue problems, Mathematics in Science and Engineering, Vol. 82, Academic Press, New York-London, 1972. Volume I: Matrices and compact operators. MR 0451001
Patrick J. Browne and B. D. Sleeman, Inverse multiparameter eigenvalue problems for matrices, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), no. 1-2, 29–38. MR 801842, DOI 10.1017/S0308210500013615
6. R. D. Carmichael, Boundary value and expansion problems, Amer. J. Math. 43 (1921), 69-101; ibid. 43 (1921), 232-270; 44 (1922), 129-152.
Heinz Otto Cordes, Über die Spektralzerlegung von hypermaximalen Operatoren, die durch Separation der Variablen zerfallen. I, II, Math. Ann. 128 (1954), 257–289; 373–411 (1955) (German). MR 66562, DOI 10.1007/BF01360138
8. A. Erdélyi, Higher transcendental functions, Bateman manuscript project vol. 3, McGraw-Hill, New York, Toronto, London, 1955.
9. D. Hilbert, Grundzuge einer allgemeinsen Theorie der Linearen Integralgleichungen, Berlin, 1912.
10. H. Isaev, Lectures on multiparameter spectral theory, Calgary, 1985.
A. Källström and B. D. Sleeman, Solvability of a linear operator system, J. Math. Anal. Appl. 55 (1976), no. 3, 785–793. MR 417833, DOI 10.1016/0022-247X(76)90081-0
A. Källström and B. D. Sleeman, Joint spectra for commuting operators, Proc. Edinburgh Math. Soc. (2) 28 (1985), no. 2, 233–248. MR 806754, DOI 10.1017/S0013091500022677
Felix Klein, Ueber Körper, welche von confocalen Flächen zweiten Grades begränzt sind, Math. Ann. 18 (1881), no. 2, 410–427 (German). MR 1510109, DOI 10.1007/BF01445858
F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
Anna J. Pell, Linear equations with two parameters, Trans. Amer. Math. Soc. 23 (1922), no. 2, 198–211. MR 1501198, DOI 10.1090/S0002-9947-1922-1501198-X
B. P. Rynne, Multiparameter spectral theory and Taylor’s joint spectrum in Hilbert space, Proc. Edinburgh Math. Soc. (2) 31 (1988), no. 1, 127–144. MR 930021, DOI 10.1017/S0013091500006635
Bryan P. Rynne, Uniform convergence of multiparameter eigenfunction expansions, J. Math. Anal. Appl. 147 (1990), no. 2, 340–350. MR 1050209, DOI 10.1016/0022-247X(90)90352-G
B. D. Sleeman, Multiparameter spectral theory in Hilbert space, J. Math. Anal. Appl. 65 (1978), no. 3, 511–530. MR 510467, DOI 10.1016/0022-247X(78)90160-9
Hans Volkmer, Multiparameter eigenvalue problems and expansion theorems, Lecture Notes in Mathematics, vol. 1356, Springer-Verlag, Berlin, 1988. MR 973644, DOI 10.1007/BFb0089295
- 1.
- F. M. Arscott, A treatment of the ellipsoidal wave equation, Proc. London. Math. Soc. (3) 9 (1959), 21-50. MR 0104837
- 2.
- F. M. Arscott, Two-parameter eigenvalue problems in differential equations, Proc. London. Math. Soc. (3) 14 (1964), 459-470. MR 165164
- 3.
- F. V. Atkinson, Multiparameter spectral theory, Bull. Amer. Math. Soc. 74 (1968), 1-27. MR 220078
- 4.
- F. V. Atkinson, Multiparameter eigenvalue problems: matrices and compact operators, Academic Press, New York and London, 1972. MR 451001
- 5.
- P. J. Browne and B. D. Sleeman, Inverse multiparameter eigenvalue problems for matrices, Proc. Roy. Soc. Edinburgh Sect. (A) 100 (1985), 29-38. MR 801842
- 6.
- R. D. Carmichael, Boundary value and expansion problems, Amer. J. Math. 43 (1921), 69-101; ibid. 43 (1921), 232-270; 44 (1922), 129-152.
- 7.
- H. O. Cordes, Über die Spektralzerlegung von hypermaximalen Operatoren die durch Separation der Variablen zer fallen. I, Math. Ann. 128 (1954), 257-289; II, Math. Ann. (1955), 373-411. MR 66562
- 8.
- A. Erdélyi, Higher transcendental functions, Bateman manuscript project vol. 3, McGraw-Hill, New York, Toronto, London, 1955.
- 9.
- D. Hilbert, Grundzuge einer allgemeinsen Theorie der Linearen Integralgleichungen, Berlin, 1912.
- 10.
- H. Isaev, Lectures on multiparameter spectral theory, Calgary, 1985.
- 11.
- A. Källström and B. D. Sleeman, Solvability of a linear operator system, J. Math. Anal. Appl. 55 (1976), 785-793. MR 417833
- 12.
- A. Källström and B. D. Sleeman, Joint spectra for commuting operators, Proc. Ed. Math. Soc. 28 (1985), 233-248. MR 806754
- 13.
- F. Klein, Math. Ann. 18 (1881), p. 410, but see E. L. Ince, Ordinary differential equations, Dover, New York, 1956. MR 1510109
- 14.
- F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), 116-229. MR 1503275
- 15.
- A. J. Pell, Linear equations with two parameters, Trans. Amer. Math. Soc. 23 (1922), 198-211. MR 1501198
- 16.
- B. P. Rynne, Multiparameter spectral theory and Taylor's joint spectrum in Hilbert space, Proc. Roy. Soc. Edinburgh Sect. (A) 31 (1988), 127-144. MR 930021
- 17.
- B. P. Rynne, Uniform convergence of multiparameter eigenfunction expansions, J. Math. Anal. Appl. (to appear). MR 1050209
- 18.
- B. D. Sleeman, Multiparameter spectral theory in Hilbert space, Research Notes in Mathematics, vol. 22, Pitman, London, 1978. MR 510467
- 19.
- H. Volkmer, Multiparameter eigenvalue problems and expansion theorems, Lecture Notes in Math., vol. 1356, Springer-Verlag, Berlin and New York, 1988. MR 973644
Review Information:
Reviewer:
B. D. Sleeman
Journal:
Bull. Amer. Math. Soc.
22 (1990), 201-208
DOI:
https://doi.org/10.1090/S0273-0979-1990-15880-X