Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567838
Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: D. F. McGhee and R. H. Picard
Title: Cordes' two-parameter spectral representation theory
Additional book information: Pitman Research Notes in Mathematics Series, Volume 177, Longman Scientific and Technical, Harlow, United Kingdom and New York, 1988, 114 pp., $41.95. ISBN 0-470-21084-2.

References [Enhancements On Off] (What's this?)

  • F. M. Arscott, A new treatment of the ellipsoidal wave equation, Proc. London Math. Soc. (3) 9 (1959), 21–50. MR 104837, DOI 10.1112/plms/s3-9.1.21
  • F. M. Arscott, Two-parameter eigenvalue problems in differential equations, Proc. London Math. Soc. (3) 14 (1964), 459–470. MR 165164, DOI 10.1112/plms/s3-14.3.459
  • F. V. Atkinson, Multiparameter spectral theory, Bull. Amer. Math. Soc. 74 (1968), 1–27. MR 220078, DOI 10.1090/S0002-9904-1968-11866-X
  • F. V. Atkinson, Multiparameter eigenvalue problems, Mathematics in Science and Engineering, Vol. 82, Academic Press, New York-London, 1972. Volume I: Matrices and compact operators. MR 0451001
  • Patrick J. Browne and B. D. Sleeman, Inverse multiparameter eigenvalue problems for matrices, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), no. 1-2, 29–38. MR 801842, DOI 10.1017/S0308210500013615
  • 6.
    R. D. Carmichael, Boundary value and expansion problems, Amer. J. Math. 43 (1921), 69-101; ibid. 43 (1921), 232-270; 44 (1922), 129-152.
  • Heinz Otto Cordes, Über die Spektralzerlegung von hypermaximalen Operatoren, die durch Separation der Variablen zerfallen. I, II, Math. Ann. 128 (1954), 257–289; 373–411 (1955) (German). MR 66562, DOI 10.1007/BF01360138
  • 8.
    A. Erdélyi, Higher transcendental functions, Bateman manuscript project vol. 3, McGraw-Hill, New York, Toronto, London, 1955.
    9.
    D. Hilbert, Grundzuge einer allgemeinsen Theorie der Linearen Integralgleichungen, Berlin, 1912.
    10.
    H. Isaev, Lectures on multiparameter spectral theory, Calgary, 1985.
  • A. Källström and B. D. Sleeman, Solvability of a linear operator system, J. Math. Anal. Appl. 55 (1976), no. 3, 785–793. MR 417833, DOI 10.1016/0022-247X(76)90081-0
  • A. Källström and B. D. Sleeman, Joint spectra for commuting operators, Proc. Edinburgh Math. Soc. (2) 28 (1985), no. 2, 233–248. MR 806754, DOI 10.1017/S0013091500022677
  • Felix Klein, Ueber Körper, welche von confocalen Flächen zweiten Grades begränzt sind, Math. Ann. 18 (1881), no. 2, 410–427 (German). MR 1510109, DOI 10.1007/BF01445858
  • F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
  • Anna J. Pell, Linear equations with two parameters, Trans. Amer. Math. Soc. 23 (1922), no. 2, 198–211. MR 1501198, DOI 10.1090/S0002-9947-1922-1501198-X
  • B. P. Rynne, Multiparameter spectral theory and Taylor’s joint spectrum in Hilbert space, Proc. Edinburgh Math. Soc. (2) 31 (1988), no. 1, 127–144. MR 930021, DOI 10.1017/S0013091500006635
  • Bryan P. Rynne, Uniform convergence of multiparameter eigenfunction expansions, J. Math. Anal. Appl. 147 (1990), no. 2, 340–350. MR 1050209, DOI 10.1016/0022-247X(90)90352-G
  • B. D. Sleeman, Multiparameter spectral theory in Hilbert space, J. Math. Anal. Appl. 65 (1978), no. 3, 511–530. MR 510467, DOI 10.1016/0022-247X(78)90160-9
  • Hans Volkmer, Multiparameter eigenvalue problems and expansion theorems, Lecture Notes in Mathematics, vol. 1356, Springer-Verlag, Berlin, 1988. MR 973644, DOI 10.1007/BFb0089295

  • Review Information:

    Reviewer: B. D. Sleeman
    Journal: Bull. Amer. Math. Soc. 22 (1990), 201-208
    DOI: https://doi.org/10.1090/S0273-0979-1990-15880-X