recommend it to anyone at all interested in universal algebra. For my own part, I will be anxiously awaiting the appearance of Volumes 2, 3, and 4.

REFERENCES

DAVID M. CLARK

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SUNY, COLLEGE AT NEW PALTZ

In the discussion on pages 255–256 of this review, the symbol \mathcal{H}, which in the book signifies K-bi-invariance, was omitted everywhere it should have occurred, with considerable loss of meaning. The places where \mathcal{H} should have appeared are as follows:

- page 255 line 28 After $\mathcal{E}'(G)$
- page 255 line 31 After the second “and”
- page 255 line 33 After $\mathcal{E}'(G)$
- page 255 line 35 After $\mathcal{D}(G)$
- page 255 line 37 After $\mathcal{E}'(G)$ (twice)
- page 255 line 43 After $\mathcal{E}'(G)$
- page 255 line 47 After $\mathcal{E}'(G)$
- page 256 line 2 After $\mathcal{E}'(G)$
- page 256 line 4 After $\mathcal{E}'(G)$

Also, in case any readers of the review were unsure as to whether the six properties of spherical functions, listed on page 255, are
treated in the book, or wondered to what parts of the book they referred, the place where each property is treated is given below. I did not intend to create an impression that the properties were not in the book.

Property i) page 399 (This is Helgason’s definition of spherical functions.)

ii) page 408, Lemma 3.2

iii) page 419, Theorem 4.5 (This is a form of the general principle valid for non-compact G. As noted in the review, the much stronger form valid for compact groups, which serves as motivation for the general result, is not treated except by example in the Introduction.)

iv) page 402, Proposition 2.4

v) page 414, Theorem 37

vi) page 400, Proposition 2.2.

The direct and inverse scattering theory for linear ordinary differential operators has been the subject of recent renewed interest. This stems in part from the so-called inverse scattering method for solving certain nonlinear partial differential equations, which uses scattering theory to convert these special nonlinear problems into linear ones. This technique was discovered by Gardner, Greene, Kruskal, and Miura [6], who described how to solve the Korteweg–de Vries equation (KdV)

$$q_t = 6qq_x - q_{xxx}$$

using the scattering theory for the ordinary differential operator family

$$L(t) = \frac{d^2}{dx^2} + q(x, t).$$