Old and new conjectured diophantine inequalities
Author:
Serge Lang
Journal:
Bull. Amer. Math. Soc. 23 (1990), 37-75
MSC (1985):
Primary 11D41, 11D75; Secondary 11G05, 11G30
DOI:
https://doi.org/10.1090/S0273-0979-1990-15899-9
MathSciNet review:
1005184
Full-text PDF Free Access
References | Similar Articles | Additional Information
- M. Artin, Néron models, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 213–230. MR 861977
- B. J. Birch, S. Chowla, Marshall Hall Jr., and A. Schinzel, On the difference $x^{3}-y^{2}$, Norske Vid. Selsk. Forh. (Trondheim) 38 (1965), 65–69. MR 186620
- P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355–369. MR 296021, DOI https://doi.org/10.4064/aa-18-1-355-369 [BLSTW] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr., Factorization of b ±1, b = 2, 3, 5, 6, 7, 10, 11 up to high powers, Contemporary Mathematics Vol. 22, AMS, 1983.
- L. V. Danilov, The Diophantine equation $x^{3}-y^{2}=k$ and a conjecture of M. Hall, Mat. Zametki 32 (1982), no. 3, 273–275, 425 (Russian). MR 677595
- H. Davenport, On $f^{3}\,(t)-g^{2}\,(t)$, Norske Vid. Selsk. Forh. (Trondheim) 38 (1965), 86–87. MR 186621
- Gerhard Frey, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ. Sarav. Ser. Math. 1 (1986), no. 1, iv+40. MR 853387 [Fr2] G. Frey, Links between elliptic curves and solutions of A — B = C, J. Indian Math. Soc., 51 (1987), pp. 117-145. [Ha] M. Hall, The diophantine equation x 3—y2 = k, Computers in Number Theory (A. O. L. Atkin and B. J. Birch, eds.), Academic Press, London, 1971, pp. 173-198.
- M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), no. 2, 419–450. MR 948108, DOI https://doi.org/10.1007/BF01394340
- Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), no. 2, 193–237. MR 434947, DOI https://doi.org/10.1112/plms/s3-33.2.193
- Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Compositio Math. 38 (1979), no. 1, 121–128. MR 523268
- Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. MR 890960
- Serge Lang, Conjectured Diophantine estimates on elliptic curves, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 155–171. MR 717593
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
- Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124
- H. W. Lenstra Jr. and F. Oort, Abelian varieties having purely additive reduction, J. Pure Appl. Algebra 36 (1985), no. 3, 281–298. MR 790619, DOI https://doi.org/10.1016/0022-4049%2885%2990079-9
- R. C. Mason, Equations over function fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 149–157. MR 756091, DOI https://doi.org/10.1007/BFb0099449
- R. C. Mason, Diophantine equations over function fields, London Mathematical Society Lecture Note Series, vol. 96, Cambridge University Press, Cambridge, 1984. MR 754559
- R. C. Mason, The hyperelliptic equation over function fields, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 2, 219–230. MR 691990, DOI https://doi.org/10.1017/S0305004100060497
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287
- André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964), 128 (French). MR 179172, DOI https://doi.org/10.1007/bf02684271
- K. A. Ribet, On modular representations of ${\rm Gal}(\overline {\bf Q}/{\bf Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, DOI https://doi.org/10.1007/BF01231195
- Jean-Pierre Serre, Sur les représentations modulaires de degré $2$ de ${\rm Gal}(\overline {\bf Q}/{\bf Q})$, Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, DOI https://doi.org/10.1215/S0012-7094-87-05413-5
- Joseph H. Silverman, Lower bound for the canonical height on elliptic curves, Duke Math. J. 48 (1981), no. 3, 633–648. MR 630588
- John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206. MR 419359, DOI https://doi.org/10.1007/BF01389745
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 33–52. Lecture Notes in Math., Vol. 476. MR 0393039
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 11D41, 11D75, 11G05, 11G30
Retrieve articles in all journals with MSC (1985): 11D41, 11D75, 11G05, 11G30