Deformation rigidity for subgroups of $SL\left ( {n,{\mathbf {Z}}} \right )$ acting on the $n$-torus
HTML articles powered by AMS MathViewer
- by Steven Hurder PDF
- Bull. Amer. Math. Soc. 23 (1990), 107-113
References
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496, DOI 10.24033/asens.1269
- Armand Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 21–55. MR 642850 4. L. Flamino and A. Katok, Rigidity of symplectic Anosov diffeomorphisms on low dimensional tori, Cal. Tech., preprint, 1989.
- John Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969), 117–124. MR 253352, DOI 10.1090/S0002-9947-1969-0253352-7
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173, DOI 10.1007/BFb0092042 7. S. Hurder, Deformation rigidity and structural stability for Anosov actions of higher-rank lattices, preprint.
- S. Hurder, Problems on rigidity of group actions and cocycles, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 473–484. MR 805843, DOI 10.1017/S0143385700003084
- S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 5–61 (1991). MR 1087392, DOI 10.1007/BF02699130 10. J. Lewis, Infinitesimal rigidity for the action of SL(n, Z) on T, Thesis, University of Chicago, May, 1989.
- A. N. Livšic, Cohomology of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1296–1320 (Russian). MR 0334287
- R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems. II, Comm. Math. Phys. 109 (1987), no. 3, 369–378. MR 882805, DOI 10.1007/BF01206141
- R. de la Llave, J. M. Marco, and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2) 123 (1986), no. 3, 537–611. MR 840722, DOI 10.2307/1971334
- J. M. Marco and R. Moriyón, Invariants for smooth conjugacy of hyperbolic dynamical systems. I, Comm. Math. Phys. 109 (1987), no. 4, 681–689. MR 885566, DOI 10.1007/BF01208962
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Gopal Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups, Ann. of Math. (2) 96 (1972), 296–317. MR 302822, DOI 10.2307/1970790
- Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255, DOI 10.1007/978-1-4757-1947-5
- Dennis Stowe, The stationary set of a group action, Proc. Amer. Math. Soc. 79 (1980), no. 1, 139–146. MR 560600, DOI 10.1090/S0002-9939-1980-0560600-2
- Robert J. Zimmer, Lattices in semisimple groups and invariant geometric structures on compact manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 152–210. MR 900826, DOI 10.1007/978-1-4899-6664-3_{6}
Additional Information
- Journal: Bull. Amer. Math. Soc. 23 (1990), 107-113
- MSC (1985): Primary 57S25, 58H15, 22E40
- DOI: https://doi.org/10.1090/S0273-0979-1990-15914-2
- MathSciNet review: 1027900