The jump is definable in the structure of the degrees of unsolvability
HTML articles powered by AMS MathViewer
- by S. Barry Cooper PDF
- Bull. Amer. Math. Soc. 23 (1990), 151-158
References
-
1. M. M. Arslanov, Structural properties of the degrees below0’, Dokl. Akad. Nauk. SSSR, (new series) 283 (2) (1985), 270-273.
- S. B. Cooper, The strong anticupping property for recursively enumerable degrees, J. Symbolic Logic 54 (1989), no. 2, 527–539. MR 997886, DOI 10.2307/2274867
- S. B. Cooper, A jump class of noncappable degrees, J. Symbolic Logic 54 (1989), no. 2, 324–353. MR 997870, DOI 10.2307/2274851
- S. Barry Cooper and Richard L. Epstein, Complementing below recursively enumerable degrees, Ann. Pure Appl. Logic 34 (1987), no. 1, 15–32. MR 887552, DOI 10.1016/0168-0072(87)90039-X
- S. Barry Cooper, Steffen Lempp, and Philip Watson, Weak density and cupping in the d-r.e. degrees, Israel J. Math. 67 (1989), no. 2, 137–152. MR 1026559, DOI 10.1007/BF02937291 6. S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp, and R. I. Soare, The d-r.e. degrees are not dense (in preparation).
- Richard L. Epstein, Degrees of unsolvability: structure and theory, Lecture Notes in Mathematics, vol. 759, Springer, Berlin, 1979. MR 551620, DOI 10.1007/BFb0067135
- L. Feiner, The strong homogeneity conjecture, J. Symbolic Logic 35 (1970), 375–377. MR 286655, DOI 10.2307/2270693
- Leo Harrington and Richard A. Shore, Definable degrees and automorphisms of ${\cal D}$, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 97–100. MR 590819, DOI 10.1090/S0273-0979-1981-14871-0
- Carl G. Jockusch Jr. and Richard A. Shore, Pseudojump operators. I. The r.e. case, Trans. Amer. Math. Soc. 275 (1983), no. 2, 599–609. MR 682720, DOI 10.1090/S0002-9947-1983-0682720-1
- Carl G. Jockusch Jr. and Richard A. Shore, Pseudojump operators. II. Transfinite iterations, hierarchies and minimal covers, J. Symbolic Logic 49 (1984), no. 4, 1205–1236. MR 771789, DOI 10.2307/2274273
- Carl G. Jockusch Jr. and Stephen G. Simpson, A degree-theoretic definition of the ramified analytical hierarchy, Ann. Math. Logic 10 (1976), no. 1, 1–32. MR 491098, DOI 10.1016/0003-4843(76)90023-1
- Carl G. Jockusch Jr. and Robert M. Solovay, Fixed points of jump preserving automorphisms of degrees, Israel J. Math. 26 (1977), no. 1, 91–94. MR 432434, DOI 10.1007/BF03007659
- S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379–407. MR 61078, DOI 10.2307/1969708
- Alistair H. Lachlan, A recursively enumerable degree which will not split over all lesser ones, Ann. Math. Logic 9 (1976), no. 4, 307–365. MR 409150, DOI 10.1016/0003-4843(76)90016-4
- A. H. Lachlan and R. Lebeuf, Countable initial segments of the degrees of unsolvability, J. Symbolic Logic 41 (1976), no. 2, 289–300. MR 403937, DOI 10.2307/2272227
- Manuel Lerman, Initial segments of the degrees of unsolvability, Ann. of Math. (2) 93 (1971), 365–389. MR 307893, DOI 10.2307/1970779
- Manuel Lerman, Degrees of unsolvability, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1983. Local and global theory. MR 708718, DOI 10.1007/978-3-662-21755-9
- Anil Nerode and Richard A. Shore, Second order logic and first order theories of reducibility orderings, The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Studies in Logic and the Foundations of Mathematics, vol. 101, North-Holland, Amsterdam-New York, 1980, pp. 181–200. MR 591882
- Anil Nerode and Richard A. Shore, Reducibility orderings: theories, definability and automorphisms, Ann. Math. Logic 18 (1980), no. 1, 61–89. MR 568916, DOI 10.1016/0003-4843(80)90004-2
- Piergiorgio Odifreddi, Classical recursion theory, Studies in Logic and the Foundations of Mathematics, vol. 125, North-Holland Publishing Co., Amsterdam, 1989. The theory of functions and sets of natural numbers; With a foreword by G. E. Sacks. MR 982269
- David B. Posner and Robert W. Robinson, Degrees joining to ${\bf 0}^{\prime }$, J. Symbolic Logic 46 (1981), no. 4, 714–722. MR 641485, DOI 10.2307/2273221
- Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316. MR 10514, DOI 10.1090/S0002-9904-1944-08111-1
- Linda Jean Richter, On automorphisms of the degrees that preserve jumps, Israel J. Math. 32 (1979), no. 1, 27–31. MR 531597, DOI 10.1007/BF02761181
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. MR 0224462
- Richard A. Shore, On homogeneity and definability in the first-order theory of the Turing degrees, J. Symbolic Logic 47 (1982), no. 1, 8–16. MR 644748, DOI 10.2307/2273376
- Richard A. Shore, A noninversion theorem for the jump operator, Ann. Pure Appl. Logic 40 (1988), no. 3, 277–303. MR 973483, DOI 10.1016/0168-0072(88)90034-6
- Richard A. Shore, Defining jump classes in the degrees below ${\bf 0}’$, Proc. Amer. Math. Soc. 104 (1988), no. 1, 287–292. MR 958085, DOI 10.1090/S0002-9939-1988-0958085-4
- Stephen G. Simpson, First-order theory of the degrees of recursive unsolvability, Ann. of Math. (2) 105 (1977), no. 1, 121–139. MR 432435, DOI 10.2307/1971028 30. T. A. Slaman and R. A. Shore, Working below a low2 recursively enumerable degree (to appear). 31. T. A. Slaman and R. A. Shore, Working below a high recursively enumerable degree (in preparation).
- Theodore A. Slaman and John R. Steel, Complementation in the Turing degrees, J. Symbolic Logic 54 (1989), no. 1, 160–176. MR 987329, DOI 10.2307/2275022
- Theodore A. Slaman and W. Hugh Woodin, Definability in the Turing degrees, Illinois J. Math. 30 (1986), no. 2, 320–334. MR 840131
- Robert I. Soare, Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987. A study of computable functions and computably generated sets. MR 882921, DOI 10.1007/978-3-662-02460-7
- C. E. M. Yates, Initial segments and implications for the structure of degrees, Conference in Mathematical Logic—London ’70 (Proc. Conf., Bedford Coll., London, 1970) Lecture Notes in Math., Vol. 255, Springer, Berlin, 1972, pp. 305–335. MR 0357095
Additional Information
- Journal: Bull. Amer. Math. Soc. 23 (1990), 151-158
- MSC (1985): Primary 03D30
- DOI: https://doi.org/10.1090/S0273-0979-1990-15923-3
- MathSciNet review: 1027898