Elliptic methods in symplectic geometry
Author:
Dusa McDuff
Journal:
Bull. Amer. Math. Soc. 23 (1990), 311-358
MSC (1985):
Primary 53C15, 58E05, 58F05
DOI:
https://doi.org/10.1090/S0273-0979-1990-15928-2
MathSciNet review:
1039425
Full-text PDF Free Access
References | Similar Articles | Additional Information
- V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
- V. I. Arnol′d, The first steps of symplectic topology, Uspekhi Mat. Nauk 41 (1986), no. 6(252), 3–18, 229 (Russian). MR 890489
- Michael Atiyah, New invariants of 3- and 4-dimensional manifolds, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 285–299. MR 974342, https://doi.org/10.1090/pspum/048/974342
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, https://doi.org/10.1098/rsta.1983.0017
- Larry Bates and Georg Peschke, A remarkable symplectic structure, J. Differential Geom. 32 (1990), no. 2, 533–538. MR 1072917
- Daniel Bennequin, Problèmes elliptiques, surfaces de Riemann et structures symplectiques, Astérisque 145-146 (1987), 4, 111–136 (French). Séminaire Bourbaki, Vol. 1985/86. MR 880029
- Raoul Bott, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 331–358. MR 663786, https://doi.org/10.1090/S0273-0979-1982-15038-8
- C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49. MR 707347, https://doi.org/10.1007/BF01393824
- Ya. M. Eliashberg, A theorem on the structure of wave fronts and its application in symplectic topology, Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 65–72, 96 (Russian). MR 911776
-
[E2] Ya. Eliashberg, Three lectures on symplectic topology, Conference at Cala Gonone, Italy, 1988.
- Yakov Eliashberg, On symplectic manifolds with some contact properties, J. Differential Geom. 33 (1991), no. 1, 233–238. MR 1085141
- I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), no. 3, 355–378. MR 978597, https://doi.org/10.1007/BF01215653
- Andreas Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988), no. 6, 775–813. MR 948771, https://doi.org/10.1002/cpa.3160410603
- Andreas Floer, A relative Morse index for the symplectic action, Comm. Pure Appl. Math. 41 (1988), no. 4, 393–407. MR 933228, https://doi.org/10.1002/cpa.3160410402
- Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. MR 965228
- Andreas Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), no. 2, 215–240. MR 956166
- Andreas Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), no. 4, 575–611. MR 987770
- Andreas Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), no. 1, 207–221. MR 1001276
- Andreas Floer, Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math. 42 (1989), no. 4, 335–356. MR 990135, https://doi.org/10.1002/cpa.3160420402
- A. Floer, H. Hofer, and C. Viterbo, The Weinstein conjecture in 𝑃×𝐶^{𝑙}, Math. Z. 203 (1990), no. 3, 469–482. MR 1038712, https://doi.org/10.1007/BF02570750
- Daniel S. Freed and Karen K. Uhlenbeck, Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, 1984. MR 757358
- A. B. Givental′, The nonlinear Maslov index, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 35–43. MR 1171907
- R. E. Greene and K. Shiohama, Diffeomorphisms and volume-preserving embeddings of noncompact manifolds, Trans. Amer. Math. Soc. 255 (1979), 403–414. MR 542888, https://doi.org/10.1090/S0002-9947-1979-0542888-3
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, https://doi.org/10.1007/BF01388806
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505
- M. Gromov, Soft and hard symplectic geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 81–98. MR 934217
- A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR 87176, https://doi.org/10.2307/2372388
- H. Hofer, Lusternik-Schnirelman-theory for Lagrangian intersections, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 5, 465–499 (English, with French summary). MR 970850
- H. Hofer, Recent progress in symplectic geometry, Nonlinear functional analysis (Newark, NJ, 1987) Lecture Notes in Pure and Appl. Math., vol. 121, Dekker, New York, 1990, pp. 49–94. MR 1025808
- H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 1-2, 25–38. MR 1059642, https://doi.org/10.1017/S0308210500024549
-
[HV1] H. Hofer and C. Viterbo, The Weinstein conjecture for compact manifolds and related results, preprint, 1989.
- H. Hofer and C. Viterbo, The Weinstein conjecture in cotangent bundles and related results, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 411–445 (1989). MR 1015801
- H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 405–427. MR 1039354
- Wilhelm Klingenberg, Lectures on closed geodesics, Springer-Verlag, Berlin-New York, 1978. Grundlehren der Mathematischen Wissenschaften, Vol. 230. MR 0478069
- János Kollár, The structure of algebraic threefolds: an introduction to Mori’s program, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 2, 211–273. MR 903730, https://doi.org/10.1090/S0273-0979-1987-15548-0
- A. B. Krygin, Extension of diffeomorphisms that preserve volume, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 72–76 (Russian). MR 0368067
- H. Blaine Lawson Jr., Minimal varieties in real and complex geometry, Les Presses de l’Université de Montréal, Montreal, Que., 1974. Séminaire de Mathématiques Supérieures, No. 57 (Été 1973). MR 0474148
- Dusa McDuff, Symplectic diffeomorphisms and the flux homomorphism, Invent. Math. 77 (1984), no. 2, 353–366. MR 752824, https://doi.org/10.1007/BF01388450
- Dusa McDuff, Examples of symplectic structures, Invent. Math. 89 (1987), no. 1, 13–36. MR 892186, https://doi.org/10.1007/BF01404672
- Dusa McDuff, Rational and ruled symplectic 4-manifolds, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 7–14. MR 1171905
- Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294. MR 182927, https://doi.org/10.1090/S0002-9947-1965-0182927-5
-
[O1] Y.-G. Oh, Floer cohomology of symplectic Lagrangian submanifolds, preprint, (NYU) 1989.
- Yong-Geun Oh, Removal of boundary singularities of pseudo-holomorphic curves with Lagrangian boundary conditions, Comm. Pure Appl. Math. 45 (1992), no. 1, 121–139. MR 1135926, https://doi.org/10.1002/cpa.3160450106
-
[P] P. Pansu, Pseudo-holomorphic curves in symplectic manifolds, preprint, École Polytechnique, Palaiseau, 1986.
- Dietmar Salamon, Morse theory, the Conley index and Floer homology, Bull. London Math. Soc. 22 (1990), no. 2, 113–140. MR 1045282, https://doi.org/10.1112/blms/22.2.113
- Dietmar Salamon and Eduard Zehnder, Floer homology, the Maslov index and periodic orbits of Hamiltonian equations, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 573–600. MR 1039363, https://doi.org/10.1017/s0022112089001631
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, https://doi.org/10.2307/2373250
- Clifford Henry Taubes, Moduli spaces and homotopy theory, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 301–315. MR 974343, https://doi.org/10.1090/pspum/048/974343
-
[V1] C. Viterbo, Capacités symplectiques et applications, Sem. Bourb. #714, June 1989.
- Claude Viterbo, Recent progress in periodic orbits of autonomous Hamiltonian systems and applications to symplectic geometry, Nonlinear functional analysis (Newark, NJ, 1987) Lecture Notes in Pure and Appl. Math., vol. 121, Dekker, New York, 1990, pp. 227–250. MR 1025811
- Alan Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), 329–346 (1971). MR 286137, https://doi.org/10.1016/0001-8708(71)90020-X
- Alan Weinstein, On extending the Conley-Zehnder fixed point theorem to other manifolds, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 541–544. MR 843640
- Edward Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), no. 4, 661–692 (1983). MR 683171
- Edward Witten, Geometry and quantum field theory, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 479–491. MR 1184624
- J. G. Wolfson, Gromov’s compactness of pseudo-holomorphic curves and symplectic geometry, J. Differential Geom. 28 (1988), no. 3, 383–405. MR 965221
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 53C15, 58E05, 58F05
Retrieve articles in all journals with MSC (1985): 53C15, 58E05, 58F05
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1990-15928-2