Critical behaviour of self-avoiding walk in five or more dimensions
Authors:
Takashi Hara and Gordon Slade
Journal:
Bull. Amer. Math. Soc. 25 (1991), 417-423
MSC (1985):
Primary 82A67, 82A25, 60K35; Secondary 82A51
DOI:
https://doi.org/10.1090/S0273-0979-1991-16085-4
MathSciNet review:
1093059
Full-text PDF Free Access
References | Similar Articles | Additional Information
- David Brydges and Thomas Spencer, Self-avoiding walk in $5$ or more dimensions, Comm. Math. Phys. 97 (1985), no. 1-2, 125–148. MR 782962
- J. T. Chayes and L. Chayes, Ornstein-Zernike behavior for self-avoiding walks at all noncritical temperatures, Comm. Math. Phys. 105 (1986), no. 2, 221–238. MR 849206
- A. J. Guttmann, Bounds on connective constants for self-avoiding walks, J. Phys. A 16 (1983), no. 10, 2233–2238. MR 713186
- J. M. Hammersley, Percolation processes. II. The connective constant, Proc. Cambridge Philos. Soc. 53 (1957), 642–645. MR 91568, DOI https://doi.org/10.1017/s0305004100032692
- J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quart. J. Math. Oxford Ser. (2) 13 (1962), 108–110. MR 139535, DOI https://doi.org/10.1093/qmath/13.1.108
- Takashi Hara, Mean-field critical behaviour for correlation length for percolation in high dimensions, Probab. Theory Related Fields 86 (1990), no. 3, 337–385. MR 1069285, DOI https://doi.org/10.1007/BF01208256
- Takashi Hara and Gordon Slade, Critical behaviour of self-avoiding walk in five or more dimensions, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 417–423. MR 1093059, DOI https://doi.org/10.1090/S0273-0979-1991-16085-4
- Takashi Hara and Gordon Slade, Critical behaviour of self-avoiding walk in five or more dimensions, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 417–423. MR 1093059, DOI https://doi.org/10.1090/S0273-0979-1991-16085-4
- Harry Kesten, On the number of self-avoiding walks. II, J. Mathematical Phys. 5 (1964), 1128–1137. MR 166845, DOI https://doi.org/10.1063/1.1704216
- Gregory F. Lawler, The infinite self-avoiding walk in high dimensions, Ann. Probab. 17 (1989), no. 4, 1367–1376. MR 1048931
- Neal Madras and Alan D. Sokal, The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding walk, J. Statist. Phys. 50 (1988), no. 1-2, 109–186. MR 939485, DOI https://doi.org/10.1007/BF01022990
- Bernard Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas, J. Statist. Phys. 34 (1984), no. 5-6, 731–761. MR 751711, DOI https://doi.org/10.1007/BF01009437
- Gordon Slade, The diffusion of self-avoiding random walk in high dimensions, Comm. Math. Phys. 110 (1987), no. 4, 661–683. MR 895223
- Gordon Slade, Convergence of self-avoiding random walk to Brownian motion in high dimensions, J. Phys. A 21 (1988), no. 7, L417–L420. MR 951038
- Gordon Slade, The scaling limit of self-avoiding random walk in high dimensions, Ann. Probab. 17 (1989), no. 1, 91–107. MR 972773
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 82A67, 82A25, 60K35, 82A51
Retrieve articles in all journals with MSC (1985): 82A67, 82A25, 60K35, 82A51