Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 1567953
Full text of review: PDF This review is available free of charge.
Book Information:
Author: J. F. Cornwell
Title: Group theory in physics, volume III, Supersymmetries and infinite-dimensional algebras
Additional book information: Techniques of Physics (N. H. Marsh, ed.), Academic Press, New York, 1989, 615 pp., $55.00. ISBN 0-12-189805-9.
- Georgia Benkart, A Kac-Moody bibliography and some related references, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 111–135. MR 832196
- Denis Bernard and Jean Thierry-Mieg, Level one representations of the simple affine Kac-Moody algebras in their homogeneous gradations, Comm. Math. Phys. 111 (1987), no. 2, 181–246. MR 899850
- Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071. MR 843307, DOI https://doi.org/10.1073/pnas.83.10.3068
- Alex J. Feingold and Igor B. Frenkel, A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus $2$, Math. Ann. 263 (1983), no. 1, 87–144. MR 697333, DOI https://doi.org/10.1007/BF01457086
- Alex J. Feingold and Igor B. Frenkel, Classical affine algebras, Adv. in Math. 56 (1985), no. 2, 117–172. MR 788937, DOI https://doi.org/10.1016/0001-8708%2885%2990027-1
- Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and $E^{(1)}_8$, Contemporary Mathematics, vol. 121, American Mathematical Society, Providence, RI, 1991. MR 1123265
- Alex J. Feingold and James Lepowsky, The Weyl-Kac character formula and power series identities, Adv. in Math. 29 (1978), no. 3, 271–309. MR 509801, DOI https://doi.org/10.1016/0001-8708%2878%2990020-8
- I. B. Frenkel, Spinor representations of affine Lie algebras, Proc. Nat. Acad. Sci. U.S.A. 77 (1980), no. 11, 6303–6306. MR 592548, DOI https://doi.org/10.1073/pnas.77.11.6303
- I. B. Frenkel, Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Functional Analysis 44 (1981), no. 3, 259–327. MR 643037, DOI https://doi.org/10.1016/0022-1236%2881%2990012-4
- I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations, Lie algebras and related topics (New Brunswick, N.J., 1981) Lecture Notes in Math., vol. 933, Springer, Berlin-New York, 1982, pp. 71–110. MR 675108
- I. B. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980/81), no. 1, 23–66. MR 595581, DOI https://doi.org/10.1007/BF01391662 [FLM] I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the monster, Pure Appl. Math., vol. 134, Academic Press, Boston, 1989.
- Peter Goddard and David Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Internat. J. Modern Phys. A 1 (1986), no. 2, 303–414. MR 864165, DOI https://doi.org/10.1142/S0217751X86000149
- P. Goddard, W. Nahm, D. Olive, and A. Schwimmer, Vertex operators for non-simply-laced algebras, Comm. Math. Phys. 107 (1986), no. 2, 179–212. MR 863639
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI https://doi.org/10.2307/1971403
- V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323–1367 (Russian). MR 0259961
- V. G. Kac, Infinite-dimensional Lie algebras, and the Dedekind $\eta $-function, Funkcional. Anal. i Priložen. 8 (1974), no. 1, 77–78 (Russian). MR 0374210
- V. G. Kac, Infinite-dimensional algebras, Dedekind’s $\eta $-function, classical Möbius function and the very strange formula, Adv. in Math. 30 (1978), no. 2, 85–136. MR 513845, DOI https://doi.org/10.1016/0001-8708%2878%2990033-6
- V. G. Kac, Infinite-dimensional algebras, Dedekind’s $\eta $-function, classical Möbius function and the very strange formula, Adv. in Math. 30 (1978), no. 2, 85–136. MR 513845, DOI https://doi.org/10.1016/0001-8708%2878%2990033-6
- V. G. Kac, D. A. Kazhdan, J. Lepowsky, and R. L. Wilson, Realization of the basic representations of the Euclidean Lie algebras, Adv. in Math. 42 (1981), no. 1, 83–112. MR 633784, DOI https://doi.org/10.1016/0001-8708%2881%2990053-0
- V. G. Kac and D. H. Peterson, Affine Lie algebras and Hecke modular forms, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 3, 1057–1061. MR 585190, DOI https://doi.org/10.1090/S0273-0979-1980-14854-5
- Victor G. Kac and Dale H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 6, 3308–3312. MR 619827, DOI https://doi.org/10.1073/pnas.78.6.3308
- Victor G. Kac and Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), no. 2, 125–264. MR 750341, DOI https://doi.org/10.1016/0001-8708%2884%2990032-X
- Victor G. Kac and Dale H. Peterson, $112$ constructions of the basic representation of the loop group of $E_8$, Symposium on anomalies, geometry, topology (Chicago, Ill., 1985) World Sci. Publishing, Singapore, 1985, pp. 276–298. MR 850863
- Victor G. Kac and Minoru Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 14, 4956–4960. MR 949675, DOI https://doi.org/10.1073/pnas.85.14.4956
- Victor G. Kac and Minoru Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math. 70 (1988), no. 2, 156–236. MR 954660, DOI https://doi.org/10.1016/0001-8708%2888%2990055-2
- J. Lepowsky, Macdonald-type identities, Advances in Math. 27 (1978), no. 3, 230–234. MR 554353, DOI https://doi.org/10.1016/0001-8708%2878%2990099-3
- J. Lepowsky, Generalized Verma modules, loop space cohomology and MacDonald-type identities, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 169–234. MR 543216
- J. Lepowsky, Lie algebras and combinatorics, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 579–584. MR 562658
- J. Lepowsky, Euclidean Lie algebras and the modular function $j$, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 567–570. MR 604635
- J. Lepowsky, Application of the numerator formula to $k$-rowed plane partitions, Adv. in Math. 35 (1980), no. 2, 179–194. MR 560134, DOI https://doi.org/10.1016/0001-8708%2880%2990047-X
- J. Lepowsky, Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), no. 24, 8295–8299. MR 820716, DOI https://doi.org/10.1073/pnas.82.24.8295
- J. Lepowsky and S. Milne, Lie algebraic approaches to classical partition identities, Adv. in Math. 29 (1978), no. 1, 15–59. MR 501091, DOI https://doi.org/10.1016/0001-8708%2878%2990004-X
- James Lepowsky and Robert V. Moody, Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces, Math. Ann. 245 (1979), no. 1, 63–88. MR 552580, DOI https://doi.org/10.1007/BF01420431
- James Lepowsky and Robert Lee Wilson, Construction of the affine Lie algebra $A_{1}^{{}}(1)$, Comm. Math. Phys. 62 (1978), no. 1, 43–53. MR 573075
- James Lepowsky and Robert Lee Wilson, The Rogers-Ramanujan identities: Lie theoretic interpretation and proof, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 2, 699–701. MR 605423, DOI https://doi.org/10.1073/pnas.78.2.699
- James Lepowsky and Robert Lee Wilson, A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Adv. in Math. 45 (1982), no. 1, 21–72. MR 663415, DOI https://doi.org/10.1016/S0001-8708%2882%2980012-1
- James Lepowsky and Robert Lee Wilson, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 12, 7254–7258. MR 638674, DOI https://doi.org/10.1073/pnas.78.12.7254
- James Lepowsky and Robert Lee Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), no. 2, 199–290. MR 752821, DOI https://doi.org/10.1007/BF01388447
- James Lepowsky and Robert Lee Wilson, The structure of standard modules. II. The case $A^{(1)}_1$, principal gradation, Invent. Math. 79 (1985), no. 3, 417–442. MR 782227, DOI https://doi.org/10.1007/BF01388515
- I. G. Macdonald, Affine root systems and Dedekind’s $\eta $-function, Invent. Math. 15 (1972), 91–143. MR 357528, DOI https://doi.org/10.1007/BF01418931
- Robert V. Moody, A new class of Lie algebras, J. Algebra 10 (1968), 211–230. MR 229687, DOI https://doi.org/10.1016/0021-8693%2868%2990096-3
- Robert V. Moody, Euclidean Lie algebras, Canadian J. Math. 21 (1969), 1432–1454. MR 255627, DOI https://doi.org/10.4153/CJM-1969-158-2
- R. V. Moody, Macdonald identities and Euclidean Lie algebras, Proc. Amer. Math. Soc. 48 (1975), 43–52. MR 442048, DOI https://doi.org/10.1090/S0002-9939-1975-0442048-2
- Akihiro Tsuchiya and Yukihiro Kanie, Vertex operators in conformal field theory on ${\bf P}^1$ and monodromy representations of braid group, Conformal field theory and solvable lattice models (Kyoto, 1986) Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 297–372. MR 972998, DOI https://doi.org/10.2969/aspm/01610297
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772
- C. N. Yang and M. L. Ge (eds.), Braid group, knot theory and statistical mechanics, Advanced Series in Mathematical Physics, vol. 9, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. MR 1062420
- Masaaki Yoshida, Discrete reflection groups in a parabolic subgroup of ${\rm Sp}(2,\,{\bf R})$ and symmetrizable hyperbolic generalized Cartan matrices of rank $3$, J. Math. Soc. Japan 36 (1984), no. 2, 243–258. MR 740316, DOI https://doi.org/10.2969/jmsj/03620243
Review Information:
Reviewer: Alex J. Feingold
Journal: Bull. Amer. Math. Soc. 25 (1991), 432-440
DOI: https://doi.org/10.1090/S0273-0979-1991-16087-8