Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567956
Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Francis E. Burstall and John H. Rawnsley
Title: Twistor theory for Riemannian symmetric spaces
Additional book information: Springer-Verlag, Berlin and New York, 1990, 112 pp., $14.70. ISBN 3-540-52602-1.

References [Enhancements On Off] (What's this?)

  • Robert L. Bryant, Conformal and minimal immersions of compact surfaces into the $4$-sphere, J. Differential Geometry 17 (1982), no. 3, 455–473. MR 679067
  • Robert L. Bryant, Lie groups and twistor spaces, Duke Math. J. 52 (1985), no. 1, 223–261. MR 791300, DOI 10.1215/S0012-7094-85-05213-5
  • 3.
    E. Calabi, Quelques applications de l'analyse complex aux surfaces d'aire minima, Topics in Complex Manifolds, Université de Montréal, 1967.
  • J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), no. 3, 217–263. MR 716372, DOI 10.1016/0001-8708(83)90062-2
  • Robert J. Baston and Michael G. Eastwood, The Penrose transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Its interaction with representation theory; Oxford Science Publications. MR 1038279
  • A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR 87176, DOI 10.2307/2372388
  • G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215–248. MR 364254, DOI 10.1007/BF01357141
  • Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • S. A. Huggett and K. P. Tod, An introduction to twistor theory, London Mathematical Society Student Texts, vol. 4, Cambridge University Press, Cambridge, 1985. MR 821467
  • Karen Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1–50. MR 1001271
  • R. S. Ward and Raymond O. Wells Jr., Twistor geometry and field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1990. MR 1054377, DOI 10.1017/CBO9780511524493

  • Review Information:

    Reviewer: Raymond O. Wells, Jr.
    Journal: Bull. Amer. Math. Soc. 25 (1991), 454-457
    DOI: https://doi.org/10.1090/S0273-0979-1991-16090-8