Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
1567956
Full text of review:
PDF
This review is available free of charge.
Book Information:
Authors:
Francis E. Burstall and
John H. Rawnsley
Title:
Twistor theory for Riemannian symmetric spaces
Additional book information:
Springer-Verlag, Berlin and New York, 1990, 112 pp., $14.70. ISBN 3-540-52602-1.
Robert L. Bryant, Conformal and minimal immersions of compact surfaces into the $4$-sphere, J. Differential Geometry 17 (1982), no. 3, 455–473. MR 679067
Robert L. Bryant, Lie groups and twistor spaces, Duke Math. J. 52 (1985), no. 1, 223–261. MR 791300, DOI 10.1215/S0012-7094-85-05213-5
3. E. Calabi, Quelques applications de l'analyse complex aux surfaces d'aire minima, Topics in Complex Manifolds, Université de Montréal, 1967.
J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), no. 3, 217–263. MR 716372, DOI 10.1016/0001-8708(83)90062-2
Robert J. Baston and Michael G. Eastwood, The Penrose transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Its interaction with representation theory; Oxford Science Publications. MR 1038279
A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR 87176, DOI 10.2307/2372388
G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215–248. MR 364254, DOI 10.1007/BF01357141
Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
S. A. Huggett and K. P. Tod, An introduction to twistor theory, London Mathematical Society Student Texts, vol. 4, Cambridge University Press, Cambridge, 1985. MR 821467
Karen Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1–50. MR 1001271
R. S. Ward and Raymond O. Wells Jr., Twistor geometry and field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1990. MR 1054377, DOI 10.1017/CBO9780511524493
- 1.
- R. L. Bryant, Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Differential Geom. 17 (1982), 455-473. MR 0679067
- 2.
- R. L. Bryant, Lie groups and twistor spaces, Duke Math. J. 52 (1985), 223-261. MR 791300
- 3.
- E. Calabi, Quelques applications de l'analyse complex aux surfaces d'aire minima, Topics in Complex Manifolds, Université de Montréal, 1967.
- 4.
- J. Eells and J. C. Wood, Harmonic maps from surfaces into projective spaces, Adv. in Math. 49 (1983), 217-263. MR 716372
- 5.
- R. J. Baston and M. L. Eastwood, The Penrose transform: Its interaction with representation theory, Oxford Univ. Press, New York and London, 1989. MR 1038279
- 6.
- A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121-138. MR 87176
- 7.
- G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles over curves, Math. Ann. 212 (1975), 215-248. MR 364254
- 8.
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 514561
- 9.
- S. J. Hugget and K. P. Tod, An introduction to twistor theory, Cambridge Univ. Press, Cambridge, 1985. MR 821467
- 10.
- K. Uhlenbeck, Harmonic maps into Lie groups (classical solutions of the chiral model), J. Differential Geom. 30 (1989), 1-50. MR 1001271
- 11.
- R. S. Ward and Raymond O. Wells, Jr., Twistor geometry and field theory, Cambridge Univ. Press, Cambridge, 1990. MR 1054377
Review Information:
Reviewer:
Raymond O. Wells, Jr.
Journal:
Bull. Amer. Math. Soc.
25 (1991), 454-457
DOI:
https://doi.org/10.1090/S0273-0979-1991-16090-8