Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 1567957
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: W. K. Hayman
Title: Subharmonic functions,
Additional book information: Academic Press, London, 1990, 590 pp., $53.50. ISBN 0-12-334802-1.

References [Enhancements On Off] (What's this?)

  • Angelo Alvino, Pierre-Louis Lions, and Guido Trombetti, Comparaison des solutions d’équations paraboliques et elliptiques par symétrisation. Une méthode nouvelle, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 20, 975–978 (French, with English summary). MR 877184
  • Albert Baernstein II, Ahlfors and conformal invariants, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 3, 289–312. MR 994466, DOI 10.5186/aasfm.1988.1323
  • Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 572958
  • Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
  • J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
  • Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
  • [E] M. Essén, The ${\rm cos}$ $\pi łambda $ theorem, Lecture Notes in Math., vol. 467, Springer-Verlag, Berlin, 1975.

  • John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • W. K. Hayman, Research problems in function theory, The Athlone Press [University of London], London, 1967. MR 0217268
  • [HK] W. K. Hayman and P. B. Kennedy, Subharmonic functions, vol. 1, Academic Press, London, 1976.

  • Paul Koosis, The logarithmic integral. I, Cambridge Studies in Advanced Mathematics, vol. 12, Cambridge University Press, Cambridge, 1988. MR 961844, DOI 10.1017/CBO9780511566196
  • M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894

  • Review Information:

    Reviewer: Albert Baernstein, II
    Journal: Bull. Amer. Math. Soc. 25 (1991), 458-467