## The Green function of Teichmüller spaces with applications

HTML articles powered by AMS MathViewer

- by Samuel L. Krushkal PDF
- Bull. Amer. Math. Soc.
**27**(1992), 143-147 Request permission

## Abstract:

We describe briefly a new approach to some problems related to Teichmüller spaces, invariant metrics, and extremal quasiconformal maps. This approach is based on the properties of plurisubharmonic functions, especially of the plurisubharmonic Green function. The main theorem gives an explicit representation of the Green function for Teichmüller spaces by the Kobayashi-Teichmüller metric of these spaces. This leads to various applications. In particular, this gives a new characterization of extremal quasiconformal maps.## References

- Kazuo Azukawa,
*The invariant pseudometric related to negative plurisubharmonic functions*, Kodai Math. J.**10**(1987), no. 1, 83–92. MR**879385**, DOI 10.2996/kmj/1138037363 - Jean-Pierre Demailly,
*Mesures de Monge-Ampère et mesures pluriharmoniques*, Math. Z.**194**(1987), no. 4, 519–564 (French). MR**881709**, DOI 10.1007/BF01161920 - Clifford J. Earle,
*The Teichmüller distance is differentiable*, Duke Math. J.**44**(1977), no. 2, 389–397. MR**445013** - C. J. Earle, I. Kra, and S. L. Krushkal′,
*Holomorphic motions and Teichmüller spaces*, Trans. Amer. Math. Soc.**343**(1994), no. 2, 927–948. MR**1214783**, DOI 10.1090/S0002-9947-1994-1214783-6 - Frederick P. Gardiner,
*Teichmüller theory and quadratic differentials*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR**903027** - Richard S. Hamilton,
*Extremal quasiconformal mappings with prescribed boundary values*, Trans. Amer. Math. Soc.**138**(1969), 399–406. MR**245787**, DOI 10.1090/S0002-9947-1969-0245787-3 - M. Klimek,
*Extremal plurisubharmonic functions and invariant pseudodistances*, Bull. Soc. Math. France**113**(1985), no. 2, 231–240 (English, with French summary). MR**820321**, DOI 10.24033/bsmf.2029 - Samuil L. Krushkal′,
*Quasiconformal mappings and Riemann surfaces*, A Halsted Press Book, V. H. Winston & Sons, Washington, D.C.; John Wiley & Sons, New York-Toronto, Ont.-London, 1979. Edited by Irvin Kra [Irwin Kra]; Translated from the Russian; With a foreword by Lipman Bers. MR**536488** - S. L. Krushkal′,
*Strengthening pseudoconvexity of finite-dimensional Teichmüller spaces*, Math. Ann.**290**(1991), no. 4, 681–687. MR**1119946**, DOI 10.1007/BF01459267 - S. L. Krushkal′ and R. Kyunau,
*Kvazikonformnye otobrazheniya—novye metody i prilozheniya*, “Nauka” Sibirsk. Otdel., Novosibirsk, 1984 (Russian). MR**753286** - Pierre Lelong,
*Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach*, J. Math. Pures Appl. (9)**68**(1989), no. 3, 319–347 (French). MR**1025907** - Subhashis Nag,
*The complex analytic theory of Teichmüller spaces*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR**927291** - Masaru Nishihara, Kwang Ho Shon, and Noriko Sugawara,
*On pseudometrics and their indicatrices in balanced open subsets of a locally convex space*, Math. Rep. Toyama Univ.**9**(1986), 109–136. MR**864804**
E. A. Poletskii and B. V. Shabat, - Edgar Reich and Kurt Strebel,
*Extremal quasiconformal mappings with given boundary values*, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR**0361065** - H. L. Royden,
*Automorphisms and isometries of Teichmüller space*, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 369–383. MR**0288254** - Zbigniew Slodkowski,
*Holomorphic motions and polynomial hulls*, Proc. Amer. Math. Soc.**111**(1991), no. 2, 347–355. MR**1037218**, DOI 10.1090/S0002-9939-1991-1037218-8 - Kurt Strebel,
*Extremal quasiconformal mappings*, Results Math.**10**(1986), no. 1-2, 168–210. MR**869809**, DOI 10.1007/BF03322374

*Invariant metrics*, Several Complex Variables III, Geometric Function Theory, Encyclopedia Math. Sci. (G.M. Henkin, eds.),

**9**, Springer, Berlin, Heidelberg and New York, 1989, pp. 63-111.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Bull. Amer. Math. Soc.
**27**(1992), 143-147 - MSC (2000): Primary 30C75; Secondary 31C10, 32G15
- DOI: https://doi.org/10.1090/S0273-0979-1992-00294-X
- MathSciNet review: 1142683