Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
1568032
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
A. B\"ottcher and B. Silbermann
Title:
Analysis of Toeplitz operators
Additional book information:
Springer-Verlag, New York, 1990, 512 pp., US$79.00. ISBN 3-540-52147-X.
M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), no. 3, 597–604. MR 428097
M. B. Abrahamse, The spectrum of a Toeplitz operator with a multiplicatively periodic symbol, J. Functional Analysis 31 (1979), no. 2, 224–233. MR 525953, DOI 10.1016/0022-1236(79)90063-6
Sheldon Axler, Sun-Yung A. Chang, and Donald Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), no. 3, 285–309. MR 511973, DOI 10.1007/BF01682841
C. A. Berger and L. A. Coburn, Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), no. 3, 273–299. MR 859136, DOI 10.1016/0022-1236(86)90099-6
Albrecht Böttcher and Bernd Silbermann, Invertibility and asymptotics of Toeplitz matrices, Mathematical Research, vol. 17, Akademie-Verlag, Berlin, 1983. MR 734173
Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
Douglas N. Clark, On Toeplitz operators with loops. II, J. Operator Theory 7 (1982), no. 1, 109–123. MR 650196
Douglas N. Clark and Judith H. Morrel, On Toeplitz operators and similarity, Amer. J. Math. 100 (1978), no. 5, 973–986. MR 517140, DOI 10.2307/2373957
L. A. Coburn, The $C^{\ast }$-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211–217. MR 236720, DOI 10.1090/S0002-9947-1969-0236720-9
L. A. Coburn and R. G. Douglas, Translation operators on the half-line, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 1010–1013. MR 275228, DOI 10.1073/pnas.62.4.1010
John B. Conway, The theory of subnormal operators, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, Providence, RI, 1991. MR 1112128, DOI 10.1090/surv/036
Carl C. Cowen and John J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216–220. MR 749683
Allen Devinatz, Toeplitz operators on $H^{2}$ spaces, Trans. Amer. Math. Soc. 112 (1964), 304–317. MR 163174, DOI 10.1090/S0002-9947-1964-0163174-9
Ronald G. Douglas, Another look at real-valued index theory, Surveys of some recent results in operator theory, Vol. II, Pitman Res. Notes Math. Ser., vol. 192, Longman Sci. Tech., Harlow, 1988, pp. 91–120. MR 976844
R. G. Douglas, Local Toeplitz operators, Proc. London Math. Soc. (3) 36 (1978), no. 2, 243–272. MR 482348, DOI 10.1112/plms/s3-36.2.243
Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
I. C. Gohberg, Toeplitz matrices composed of the Fourier coefficients of piecewise continuous functions, Funkcional. Anal. i Priložen. 1 (1967), no. 2, 91–92 (Russian). MR 0213909
I. C. Gohberg and M. G. Kreĭn, Systems of integral equations on the half-line with kernels depending on the difference of the arguments, Uspehi Mat. Nauk (N.S.) 13 (1958), no. 2 (80), 3–72 (Russian). MR 0102720
P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
Philip Hartman and Aurel Wintner, On the spectra of Toeplitz’s matrices, Amer. J. Math. 72 (1950), 359–366. MR 36936, DOI 10.2307/2372039
Philip Hartman and Aurel Wintner, The spectra of Toeplitz’s matrices, Amer. J. Math. 76 (1954), 867–882. MR 73859, DOI 10.2307/2372661
R. S. Ismagilov, On the spectrum of Toeplitz matrices, Dokl. Akad. Nauk SSSR 149 (1963), 769–772 (Russian). MR 0146670
Jerome Kaminker, Operator algebraic invariants for elliptic operators, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 307–314. MR 1077392, DOI 10.1090/conm/105
N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
Vladimir V. Peller, Hankel operators and multivariate stationary processes, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 357–371. MR 1077396
S. C. Power, Essential spectra of piecewise continuous Fourier integral operators, Proc. Roy. Irish Acad. Sect. A 81 (1981), no. 1, 1–7. MR 635571
S. C. Power, Hankel operators on Hilbert space, Research Notes in Mathematics, vol. 64, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 666699
Marvin Rosenblum, A concrete spectral theory for self-adjoint Toeplitz operators, Amer. J. Math. 87 (1965), 709–718. MR 181901, DOI 10.2307/2373070
Marvin Rosenblum, The absolute continuity of Toeplitz’s matrices, Pacific J. Math. 10 (1960), 987–996. MR 114125
Marvin Rosenblum and James Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications. MR 822228
Donald Sarason, Toeplitz operators with piecewise quasicontinuous symbols, Indiana Univ. Math. J. 26 (1977), no. 5, 817–838. MR 463968, DOI 10.1512/iumj.1977.26.26066
Bernd Silbermann, The $C^*$-algebra generated by Toeplitz and Hankel operators with piecewise quasicontinuous symbols, Integral Equations Operator Theory 10 (1987), no. 5, 730–738. Toeplitz lectures 1987 (Tel-Aviv, 1987). MR 904487, DOI 10.1007/BF01195799
I. B. Simonenko, Riemann’s boundary problem with a measurable coefficient, Soviet Math. Dokl. 1 (1960), 1295–1298. MR 0140698
Shun Hua Sun, Bergman shift is not unitarily equivalent to a Toeplitz operator, Kexue Tongbao (English Ed.) 28 (1983), no. 8, 1027–1030. MR 763833
Harald Upmeier, Toeplitz operators and index theory in several complex variables, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 585–598. MR 1077410, DOI 10.1017/s0022112089002193
A. L. Vol′berg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), no. 2, 209–218. MR 658609
Harold Widom, Inversion of Toeplitz matrices. II, Illinois J. Math. 4 (1960), 88–99. MR 130572
[38] -, Inversion of Toeplitz matrices. III, Notices Amer. Math. Soc. 7 (1960), 63.
Harold Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365–375. MR 163173
Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007
- [1]
- M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke J. Math. 43 (1976), 597-604. MR 0428097 (55:1126)
- [2]
- -, The spectrum of a Toeplitz operator with multiplicatively periodic symbol, J. Funct. Anal. 31 (1979), 224-233. MR 525953 (82b:47029)
- [3]
- S. Axler, S.-Y. A. Chang, and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), 285-309. MR 511973 (80d:47039)
- [4]
- C. Berger and L. Coburn, Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), 273-299. MR 859136 (88b:46098)
- [5]
- A. Böttcher and B. Silbermann, Invertibility and asymptotics of Toeplitz matrices, Akademie-Verlag, Berlin, 1983. MR 734173 (85g:47037)
- [6]
- A. Brown and P. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963), 89-102. MR 0160136 (28:3350)
- [7]
- D. Clark, On Toeplitz operators with loops. II, J. Operator Theory 7 (1982), 109-123. MR 650196 (83g:47028)
- [8]
- D. Clark and J. Morrel, On Toeplitz operators and similarity, Amer. J. Math. 100 (1978), 973-986. MR 517140 (80d:47041)
- [9]
- L. Coburn, The
-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211-217. MR 0236720 (38:5015)
- [10]
- L. Coburn and R. Douglas, Translation operators on a half-line, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 1010-1013. MR 0275228 (43:985)
- [11]
- J. Conway, The theory of subnormal operators, Math. Surveys Monographs, vol. 36, Amer. Math. Soc., Providence, RI, 1991. MR 1112128 (92h:47026)
- [12]
- C. Cowen and J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216-220. MR 749683 (86h:47034)
- [13]
- A. Devinatz, Toeplitz operators on H
spaces, Trans. Amer. Math. Soc. 112 (1964), 304-317. MR 0163174 (29:477)
- [14]
- R. Douglas, Another look at real-valued index theory, Surveys of Some Recent Results in Operator Theory, vol. II (J. Conway and B. Morrel, eds.), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Essex, UK, (co-published with Wiley, New York), pp. 91-120. MR 976844 (90d:58146)
- [15]
- -, Local Toeplitz operators, Proc. London Math. Soc. (3) 36 (1978), 243-272. MR 0482348 (58:2421)
- [16]
- -, Banach algebra techniques in operator theory, Academic Press, New York, 1972. MR 0361893 (50:14335)
- [17]
- I. Gohberg, On Toeplitz matrices constituted by the Fourier coefficients of piecewise continuous functions, Funktsional. Anal. i Prilozhen. 1 (1967), 91-92. MR 0213909 (35:4763)
- [18]
- I. Gohberg and M. Kreĭn, Systems of integral equations on a half-line with kernels depending on the difference of arguments, Uspekhi Mat. Nauk 13 (1958), 3-72; English transl., Amer. Math. Soc. Transl. Ser. 2, vol. 14, Amer. Math. Soc., Providence, RI, 1960, pp. 217-287. MR 0102720 (21:1506)
- [19]
- P. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. MR 0270173 (42:5066)
- [20]
- P. Hartman and A. Wintner, On the spectra of Toeplitz matrices, Amer. J. Math. 72 (1950), 359-366. MR 0036936 (12:187a)
- [21]
- -, The spectra of Toeplitz matrices, Amer. J. Math. 76 (1954), 867-882. MR 0073859 (17:499a)
- [22]
- R. Ismagilov, The spectrum of Toeplitz matrices, Dokl. Akad. Nauk SSSR 149 (1963), 769-772; Soviet Math. Dokl. 4 (1963), 462-465. MR 0146670 (26:4190)
- [23]
- J. Kaminker, Operator algebraic invariants for elliptic operators, Operator Theory, Operator Algebras and Applications (W. Arveson and R. Douglas, eds.), Proc. Sympos. Pure Math., vol. 51, Part 1, Amer. Math. Soc., Providence, RI, 1990, pp. 307-314. MR 1077392 (91k:58125)
- [24]
- N. K. Nikol'skii, Treatise on the shift operator, "Nauka", Moscow, 1980 (Russian); English transl., Springer-Verlag, Berlin and Heidelberg, 1986. MR 827223 (87i:47042)
- [25]
- V. Peller, Hankel operators and multivariate stationary processes, Operator Theory, Operator Algebras and Applications (W. Arveson and R. Douglas, eds.), Proc. Sympos. Pure Math., vol. 51, Part 1, Amer. Math. Soc., Providence, RI, 1990, pp. 357-371. MR 1077396 (91m:47034)
- [26]
- S. Power, Essential spectra of piecewise continuous Fourier integral operators, Proc. Royal Irish Acad. Sect. A 18 (1981), 1-7. MR 635571 (84f:47060)
- [27]
- -, Hankel operators on Hilbert space, Research Notes in Math., vol. 64, Pitman Advanced Publishing Program, Boston, London, and Melbourne, 1982. MR 666699 (84e:47037)
- [28]
- M. Rosenblum, A concrete spectral theory for self-adjoint Toeplitz operators, Amer. J. Math. 87 (1965), 709-718. MR 0181901 (31:6127)
- [29]
- -, The absolute continuity of Toeplitz matrices, Pacific J. Math. 10 (1960), 987-996. MR 0114125 (22:4952)
- [30]
- M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Oxford Univ. Press, New York and Oxford, 1985. MR 822228 (87e:47001)
- [31]
- D. Sarason, Toeplitz operators with piecewise quasicontinuous symbols, Indiana Univ. Math. J. 26 (1977), 817-838. MR 0463968 (57:3906)
- [32]
- B. Silbermann, The
-algebra generated by Toeplitz and Hankel operators with piecewise quasicontinuous symbols, Integral Equations Operator Theory 10 (1987), 730-738. MR 904487 (88m:47047)
- [33]
- I. Simonenko, The Riemann boundary value problem with measurable coefficients, Dokl. Akad. Nauk SSSR 135 (1960), 538-541; Soviet Math. Dokl. 1 (1960), 1295-1298. MR 0140698 (25:4112)
- [34]
- Sun Shunhua, Bergman shift is not unitarily equivalent to a Toeplitz operator, Kexue Tongbao 28 (1983), 1027-1030. MR 763833 (86d:47032)
- [35]
- H. Upmeier, Toeplitz operators and index theory in several complex variables, Operator Theory, Operator Algebras and Applications (W. Arveson and R. Douglas, eds.), Proc. Sympos. Pure Math., vol. 51, Part 1, Amer. Math. Soc., Providence, RI, 1990, pp. 585-598. MR 1077410 (92f:47021)
- [36]
- A. Vol'berg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), 209-218. MR 658609 (84h:47038a)
- [37]
- H. Widom, Inversion of Toeplitz matrices. II, Illinois J. Math. 4 (1960), 88-99. MR 0130572 (24:A432)
- [38]
- -, Inversion of Toeplitz matrices. III, Notices Amer. Math. Soc. 7 (1960), 63.
- [39]
- -, On the spectrum of Toeplitz operators, Pacific J. Math. 14 (1964), 365-375. MR 0163173 (29:476)
- [40]
- K. Zhu, Operator theory on function spaces, Pure Appl. Math. Ser., vol. 139, Marcel Dekker, New York, 1990. MR 1074007 (92c:47031)
Review Information:
Reviewer:
Thomas Kriete
Journal:
Bull. Amer. Math. Soc.
28 (1993), 387-396
DOI:
https://doi.org/10.1090/S0273-0979-1993-00370-7