Borel actions of Polish groups
HTML articles powered by AMS MathViewer
- by Howard Becker and Alexander S. Kechris PDF
- Bull. Amer. Math. Soc. 28 (1993), 334-341 Request permission
Abstract:
We show that a Borel action of a Polish group on a standard Borel space is Borel isomorphic to a continuous action of the group on a Polish space, and we apply this result to three aspects of the theory of Borel actions of Polish groups: universal actions, invariant probability measures, and the Topological Vaught Conjecture. We establish the existence of universal actions for any given Polish group, extending a result of Mackey and Varadarajan for the locally compact case. We prove an analog of Tarski’s theorem on paradoxical decompositions by showing that the existence of an invariant Borel probability measure is equivalent to the nonexistence of paradoxical decompositions with countably many Borel pieces. We show that various natural versions of the Topological Vaught Conjecture are equivalent with each other and, in the case of the group of permutations of ${\mathbb {N}}$, with the model-theoretic Vaught Conjecture for infinitary logic; this depends on our identification of the universal action for that group.References
- Louis Auslander and Calvin C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. 62 (1966), 199. MR 207910, DOI 10.1090/memo/0062
- Howard Becker, The topological Vaught’s conjecture and minimal counterexamples, J. Symbolic Logic 59 (1994), no. 3, 757–784. MR 1295968, DOI 10.2307/2275907
- John P. Burgess, Equivalences generated by families of Borel sets, Proc. Amer. Math. Soc. 69 (1978), no. 2, 323–326. MR 476524, DOI 10.1090/S0002-9939-1978-0476524-6
- John Burgess and Douglas Miller, Remarks on invariant descriptive set theory, Fund. Math. 90 (1975), no. 1, 53–75. MR 403975, DOI 10.4064/fm-90-1-53-75 G. Choquet, Lectures on analysis, W. A. Benjamin, New York, 1969.
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Jacob Feldman, Peter Hahn, and Calvin C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. in Math. 28 (1978), no. 3, 186–230. MR 492061, DOI 10.1016/0001-8708(78)90114-7
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI 10.1090/S0002-9947-1961-0136681-X
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI 10.1090/S0894-0347-1990-1057041-5
- Alexander S. Kechris, Countable sections for locally compact group actions, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 283–295. MR 1176624, DOI 10.1017/S0143385700006751
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Daniel Lascar, Why some people are excited by Vaught’s conjecture, J. Symbolic Logic 50 (1985), no. 4, 973–982 (1986). MR 820126, DOI 10.2307/2273984
- E. G. K. Lopez-Escobar, An interpolation theorem for denumerably long formulas, Fund. Math. 57 (1965), 253–272. MR 188059, DOI 10.4064/fm-57-3-253-272
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2
- George W. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327–335. MR 143874, DOI 10.1215/ijm/1255632330 —, Unitary group representations in physics, probability and number theory, Addison-Wesley, Reading, MA, 1989.
- Douglas E. Miller, On the measurability of orbits in Borel actions, Proc. Amer. Math. Soc. 63 (1977), no. 1, 165–170. MR 440519, DOI 10.1090/S0002-9939-1977-0440519-8
- Calvin C. Moore, Ergodic theory and von Neumann algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 179–226. MR 679505, DOI 10.1090/pspum/038.2/679505
- M. G. Nadkarni, On the existence of a finite invariant measure, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 3, 203–220. MR 1081705, DOI 10.1007/BF02837844 G. I. Olshanski, New "large groups" of type I, J. Soviet Math. 18 (1982), 22-39.
- Arlan Ramsay, Topologies on measured groupoids, J. Functional Analysis 47 (1982), no. 3, 314–343. MR 665021, DOI 10.1016/0022-1236(82)90110-0
- Arlan Ramsay, Measurable group actions are essentially Borel actions, Israel J. Math. 51 (1985), no. 4, 339–346. MR 804490, DOI 10.1007/BF02764724
- Analytic sets, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. Lectures delivered at a Conference held at University College, University of London, London, July 16–29, 1978. MR 608794
- Ramez L. Sami, Polish group actions and the Vaught conjecture, Trans. Amer. Math. Soc. 341 (1994), no. 1, 335–353. MR 1022169, DOI 10.1090/S0002-9947-1994-1022169-2
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI 10.1016/0003-4843(80)90002-9
- L. A. Bunimovich, I. P. Cornfeld, R. L. Dobrushin, M. V. Jakobson, N. B. Maslova, Ya. B. Pesin, Ya. G. Sinaĭ, Yu. M. Sukhov, and A. M. Vershik, Dynamical systems. II, Encyclopaedia of Mathematical Sciences, vol. 2, Springer-Verlag, Berlin, 1989. Ergodic theory with applications to dynamical systems and statistical mechanics; Edited and with a preface by Sinaĭ; Translated from the Russian. MR 1024068, DOI 10.1007/978-3-662-06788-8_{8}
- John R. Steel, On Vaught’s conjecture, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 193–208. MR 526920, DOI 10.1007/BFb0069301
- V. V. Uspenskiĭ, A universal topological group with a countable basis, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 86–87 (Russian). MR 847156, DOI 10.1007/BF01077284
- V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191–220. MR 159923, DOI 10.1090/S0002-9947-1963-0159923-5
- Robert Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269–294. MR 363912, DOI 10.4064/fm-82-3-269-294 A. M. Vershik, Description of invariant measures for the actions of some infinite-dimensional groups, Soviet Math. Dokl. 15 (1974), 1396-1400. A. M. Vershik and A. L. Fedorov, Trajectory theory, J. Soviet Math. 38 (1987), 1799-1822.
- V. M. Wagh, A descriptive version of Ambrose’s representation theorem for flows, Proc. Indian Acad. Sci. Math. Sci. 98 (1988), no. 2-3, 101–108. MR 994127, DOI 10.1007/BF02863630
- Stan Wagon, The Banach-Tarski paradox, Encyclopedia of Mathematics and its Applications, vol. 24, Cambridge University Press, Cambridge, 1985. With a foreword by Jan Mycielski. MR 803509, DOI 10.1017/CBO9780511609596
- Piotr Zakrzewski, The existence of invariant probability measures for a group of transformations, Israel J. Math. 83 (1993), no. 3, 343–352. MR 1239067, DOI 10.1007/BF02784061
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 28 (1993), 334-341
- MSC: Primary 03E15; Secondary 03C75, 28E99, 54E99, 54H11
- DOI: https://doi.org/10.1090/S0273-0979-1993-00383-5
- MathSciNet review: 1185149